1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
use std::collections::HashMap;
use std::env;
use std::fs::{self, File};
use std::io::Write;
use std::net::IpAddr;
use std::path::PathBuf;
use std::str::FromStr;
use std::sync::atomic::{AtomicU64, Ordering};
use std::time::Duration;
use rcgen::{
BasicConstraints, CertificateParams, CertificateRevocationListParams, CertifiedKey,
DistinguishedName, DnType, ExtendedKeyUsagePurpose, Ia5String, IsCa, KeyIdMethod, KeyPair,
KeyUsagePurpose, PKCS_ECDSA_P256_SHA256, PKCS_ECDSA_P384_SHA384, PKCS_ECDSA_P521_SHA512,
PKCS_ED25519, PKCS_RSA_SHA256, PKCS_RSA_SHA384, PKCS_RSA_SHA512, RevocationReason,
RevokedCertParams, RsaKeySize, SanType, SerialNumber, SignatureAlgorithm,
};
use time::OffsetDateTime;
fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut certified_keys = HashMap::with_capacity(ROLES.len() * SIG_ALGS.len());
for role in ROLES {
for alg in SIG_ALGS {
// Generate a key pair and serialize it to a PEM encoded file.
let key_pair = alg.key_pair();
let mut key_pair_file = File::create(role.key_file_path(alg))?;
key_pair_file.write_all(key_pair.serialize_pem().as_bytes())?;
// Issue a certificate for the key pair. For trust anchors, this will be self-signed.
// Otherwise we dig out the issuer and issuer_key for the issuer, which should have
// been produced in earlier iterations based on the careful ordering of roles.
let cert = match role {
Role::TrustAnchor => role
.params(alg)
.self_signed(&key_pair)?,
Role::Intermediate => {
let issuer: &CertifiedKey = certified_keys
.get(&(Role::TrustAnchor, alg.inner))
.unwrap();
role.params(alg)
.signed_by(&key_pair, &issuer.cert, &issuer.key_pair)?
}
Role::EndEntity | Role::Client => {
let issuer = certified_keys
.get(&(Role::Intermediate, alg.inner))
.unwrap();
role.params(alg)
.signed_by(&key_pair, &issuer.cert, &issuer.key_pair)?
}
};
// Serialize the issued certificate to a PEM encoded file.
let mut cert_file = File::create(role.cert_pem_file_path(alg))?;
cert_file.write_all(cert.pem().as_bytes())?;
// And to a DER encoded file.
let mut cert_file = File::create(role.cert_der_file_path(alg))?;
cert_file.write_all(cert.der())?;
// If we're not a trust anchor, generate a CRL for the certificate we just issued.
if role != Role::TrustAnchor {
// The CRL will be signed by the issuer of the certificate being revoked. For
// intermediates this will be the trust anchor, and for client/EE certs this will
// be the intermediate.
let issuer = match role {
Role::Intermediate => certified_keys
.get(&(Role::TrustAnchor, alg.inner))
.unwrap(),
Role::EndEntity | Role::Client => certified_keys
.get(&(Role::Intermediate, alg.inner))
.unwrap(),
_ => panic!("unexpected role for CRL generation: {role:?}"),
};
let revoked_crl = crl_for_serial(
cert.params()
.serial_number
.clone()
.unwrap(),
)
.signed_by(&issuer.cert, &issuer.key_pair)?;
let mut revoked_crl_file = File::create(
alg.output_directory()
.join(format!("{}.revoked.crl.pem", role.label())),
)?;
revoked_crl_file.write_all(revoked_crl.pem().unwrap().as_bytes())?;
let expired_crl = expired_crl().signed_by(&issuer.cert, &issuer.key_pair)?;
let mut expired_crl_file = File::create(
alg.output_directory()
.join(format!("{}.expired.crl.pem", role.label())),
)?;
expired_crl_file.write_all(expired_crl.pem().unwrap().as_bytes())?;
}
// When we're issuing end entity or client certs we have a bit of extra work to do
// now that we have full chains in hand.
if matches!(role, Role::EndEntity | Role::Client) {
let root = &certified_keys
.get(&(Role::TrustAnchor, alg.inner))
.unwrap()
.cert;
let intermediate = &certified_keys
.get(&(Role::Intermediate, alg.inner))
.unwrap()
.cert;
// Write the PEM chain and full chain files for the end entity and client certs.
// Chain files include the intermediate and root certs, while full chain files include
// the end entity or client cert as well.
for f in [
("chain", &[intermediate, root][..]),
("fullchain", &[&cert, intermediate, root][..]),
] {
let mut chain_file = File::create(alg.output_directory().join(format!(
"{}.{}",
role.label(),
f.0
)))?;
for cert in f.1 {
chain_file.write_all(cert.pem().as_bytes())?;
}
}
// Write the PEM public key for the end entity and client.
let mut raw_public_key_file = File::create(
alg.output_directory()
.join(format!("{}.spki.pem", role.label())),
)?;
raw_public_key_file.write_all(key_pair.public_key_pem().as_bytes())?;
}
certified_keys.insert((role, alg.inner), CertifiedKey { cert, key_pair });
}
}
Ok(())
}
fn crl_for_serial(serial_number: SerialNumber) -> CertificateRevocationListParams {
let now = OffsetDateTime::now_utc();
CertificateRevocationListParams {
this_update: now,
next_update: now + Duration::from_secs(60 * 60 * 24 * 365 * 100), // 100 years
crl_number: SerialNumber::from(1234),
issuing_distribution_point: None,
revoked_certs: vec![RevokedCertParams {
serial_number,
revocation_time: now,
reason_code: Some(RevocationReason::KeyCompromise),
invalidity_date: None,
}],
key_identifier_method: KeyIdMethod::Sha256,
}
}
fn expired_crl() -> CertificateRevocationListParams {
let now = OffsetDateTime::now_utc();
CertificateRevocationListParams {
this_update: now - Duration::from_secs(60),
next_update: now,
crl_number: SerialNumber::from(1234),
issuing_distribution_point: None,
revoked_certs: vec![],
key_identifier_method: KeyIdMethod::Sha256,
}
}
// Note: these are ordered such that the data dependencies for issuance are satisfied.
const ROLES: [Role; 4] = [
Role::TrustAnchor,
Role::Intermediate,
Role::EndEntity,
Role::Client,
];
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
enum Role {
Client,
EndEntity,
Intermediate,
TrustAnchor,
}
impl Role {
fn params(&self, alg: &'static SigAlgContext) -> CertificateParams {
let mut params = CertificateParams::default();
params.distinguished_name = self.common_name(alg);
params.use_authority_key_identifier_extension = true;
let serial = SERIAL_NUMBER.fetch_add(1, Ordering::SeqCst);
params.serial_number = Some(SerialNumber::from_slice(&serial.to_be_bytes()[..]));
match self {
Self::TrustAnchor | Self::Intermediate => {
params.is_ca = IsCa::Ca(BasicConstraints::Unconstrained);
params.key_usages = ISSUER_KEY_USAGES.to_vec();
params.extended_key_usages = ISSUER_EXTENDED_KEY_USAGES.to_vec();
}
Self::EndEntity | Self::Client => {
params.is_ca = IsCa::NoCa;
params.key_usages = EE_KEY_USAGES.to_vec();
params.subject_alt_names = vec![
SanType::DnsName(Ia5String::try_from("testserver.com".to_string()).unwrap()),
SanType::DnsName(
Ia5String::try_from("second.testserver.com".to_string()).unwrap(),
),
SanType::DnsName(Ia5String::try_from("localhost".to_string()).unwrap()),
SanType::IpAddress(IpAddr::from_str("198.51.100.1").unwrap()),
SanType::IpAddress(IpAddr::from_str("2001:db8::1").unwrap()),
];
}
}
// Client certificates additionally get the client auth EKU.
if *self == Self::Client {
params.extended_key_usages = vec![ExtendedKeyUsagePurpose::ClientAuth];
}
params
}
fn common_name(&self, alg: &'static SigAlgContext) -> DistinguishedName {
let mut distinguished_name = DistinguishedName::new();
distinguished_name.push(
DnType::CommonName,
match self {
Self::Client => "ponytown client".to_owned(),
Self::EndEntity => "testserver.com".to_owned(),
Self::Intermediate => {
format!("ponytown {} level 2 intermediate", alg.issuer_cn)
}
Self::TrustAnchor => format!("ponytown {} CA", alg.issuer_cn),
},
);
distinguished_name
}
fn key_file_path(&self, alg: &'static SigAlgContext) -> PathBuf {
alg.output_directory()
.join(format!("{}.key", self.label()))
}
fn cert_pem_file_path(&self, alg: &'static SigAlgContext) -> PathBuf {
alg.output_directory()
.join(format!("{}.cert", self.label()))
}
fn cert_der_file_path(&self, alg: &'static SigAlgContext) -> PathBuf {
alg.output_directory()
.join(format!("{}.der", self.label()))
}
fn label(&self) -> &'static str {
match self {
Self::Client => "client",
Self::EndEntity => "end",
Self::Intermediate => "inter",
Self::TrustAnchor => "ca",
}
}
}
// Note: for convenience we use the RSA sigalg digest algorithm to inform the RSA modulus
// size, mapping SHA256 to RSA 2048, SHA384 to RSA 3072, and SHA512 to RSA 4096.
static SIG_ALGS: &[SigAlgContext] = &[
SigAlgContext {
inner: &PKCS_RSA_SHA256,
issuer_cn: "RSA 2048",
},
SigAlgContext {
inner: &PKCS_RSA_SHA384,
issuer_cn: "RSA 3072",
},
SigAlgContext {
inner: &PKCS_RSA_SHA512,
issuer_cn: "RSA 4096",
},
SigAlgContext {
inner: &PKCS_ECDSA_P256_SHA256,
issuer_cn: "ECDSA p256",
},
SigAlgContext {
inner: &PKCS_ECDSA_P384_SHA384,
issuer_cn: "ECDSA p384",
},
SigAlgContext {
inner: &PKCS_ECDSA_P521_SHA512,
issuer_cn: "ECDSA p521",
},
SigAlgContext {
inner: &PKCS_ED25519,
issuer_cn: "EdDSA",
},
];
struct SigAlgContext {
pub(crate) inner: &'static SignatureAlgorithm,
pub(crate) issuer_cn: &'static str,
}
impl SigAlgContext {
fn output_directory(&self) -> PathBuf {
let output_dir = PathBuf::from(env::var("CARGO_MANIFEST_DIR").unwrap())
.join("../")
.join("test-ca")
.join(
self.issuer_cn
.to_lowercase()
.replace(' ', "-"),
);
fs::create_dir_all(&output_dir).unwrap();
output_dir
}
fn key_pair(&self) -> KeyPair {
if *self.inner == PKCS_RSA_SHA256 {
KeyPair::generate_rsa_for(&PKCS_RSA_SHA256, RsaKeySize::_2048)
} else if *self.inner == PKCS_RSA_SHA384 {
KeyPair::generate_rsa_for(&PKCS_RSA_SHA384, RsaKeySize::_3072)
} else if *self.inner == PKCS_RSA_SHA512 {
KeyPair::generate_rsa_for(&PKCS_RSA_SHA512, RsaKeySize::_4096)
} else {
KeyPair::generate_for(self.inner)
}
.unwrap()
}
}
const ISSUER_KEY_USAGES: &[KeyUsagePurpose; 7] = &[
KeyUsagePurpose::CrlSign,
KeyUsagePurpose::KeyCertSign,
KeyUsagePurpose::DigitalSignature,
KeyUsagePurpose::ContentCommitment,
KeyUsagePurpose::KeyEncipherment,
KeyUsagePurpose::DataEncipherment,
KeyUsagePurpose::KeyAgreement,
];
const ISSUER_EXTENDED_KEY_USAGES: &[ExtendedKeyUsagePurpose; 2] = &[
ExtendedKeyUsagePurpose::ServerAuth,
ExtendedKeyUsagePurpose::ClientAuth,
];
const EE_KEY_USAGES: &[KeyUsagePurpose; 2] = &[
KeyUsagePurpose::DigitalSignature,
KeyUsagePurpose::ContentCommitment,
];
static SERIAL_NUMBER: AtomicU64 = AtomicU64::new(1);
|