File: README.md

package info (click to toggle)
rust-saa 5.4.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 372 kB
  • sloc: makefile: 2
file content (216 lines) | stat: -rw-r--r-- 5,745 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Synchronous and Asynchronous Synchronization Primitives

[![Cargo](https://img.shields.io/crates/v/saa)](https://crates.io/crates/saa)
![Crates.io](https://img.shields.io/crates/l/saa)

Word-sized low-level synchronization primitives providing both asynchronous and synchronous interfaces.

## Features

- No heap allocation.
- No hidden global variables.
- Provides both asynchronous and synchronous interfaces.
- [`lock_api`](https://crates.io/crates/lock_api) support: `features = ["lock_api"]`.
- [`Loom`](https://github.com/tokio-rs/loom) support: `features = ["loom"]`.

## Lock

`saa::Lock` is a low-level shared-exclusive lock providing both asynchronous and synchronous interfaces. Synchronous locking methods such as `lock_sync` and `share_sync` can be used alongside their asynchronous counterparts `lock_async` and `share_async` simultaneously. `saa::Lock` implements an allocation-free fair wait queue shared between both synchronous and asynchronous methods.

```rust
use saa::Lock;

// At most `62` concurrent shared owners are allowed.
assert_eq!(Lock::MAX_SHARED_OWNERS, 62);

let lock = Lock::default();

assert!(lock.lock_sync());
assert!(!lock.try_lock());
assert!(!lock.try_share());

assert!(!lock.release_share());
assert!(lock.release_lock());

assert!(lock.lock_sync());

// `Lock` can be poisoned.
assert!(lock.poison_lock());
assert!(!lock.lock_sync());
assert!(lock.clear_poison());

async {
    assert!(lock.share_async().await);
    assert!(lock.release_share());
    
    assert!(lock.lock_async().await);
    assert!(lock.release_lock());
};
```

### [`lock_api`](https://crates.io/crates/lock_api) support

The `lock_api` feature is automatically disabled when the `loom` feature is enabled since `loom` atomic types cannot be instantiated in const contexts.

```rust
#[cfg(all(feature = "lock_api", not(feature = "loom")))]
use saa::{Mutex, RwLock, lock_async, read_async, write_async};

#[cfg(all(feature = "lock_api", not(feature = "loom")))]
fn example() {
    let mutex: Mutex<usize> = Mutex::new(0);
    let rwlock: RwLock<usize> = RwLock::new(0);
    
    let mut mutex_guard = mutex.lock();
    assert_eq!(*mutex_guard, 0);
    *mutex_guard += 1;
    assert_eq!(*mutex_guard, 1);
    drop(mutex_guard);
    
    let mut write_guard = rwlock.write();
    assert_eq!(*write_guard, 0);
    *write_guard += 1;
    drop(write_guard);
    
    let read_guard = rwlock.read();
    assert_eq!(*read_guard, 1);
    drop(read_guard);
    
    async {
        let mutex_guard = lock_async(&mutex).await;
        assert_eq!(*mutex_guard, 1);
        drop(mutex_guard);
        
        let mut write_guard = write_async(&rwlock).await;
        *write_guard += 1;
        drop(write_guard);
        
        let reader_guard = read_async(&rwlock).await;
        assert_eq!(*reader_guard, 2);
        drop(reader_guard);
    };
}
```

## Barrier

`saa::Barrier` is a synchronization primitive to enable a number of tasks to start execution at the same time.

```rust
use std::sync::Arc;
use std::thread;

use saa::Barrier;

// At most `63` concurrent tasks/threads can be synchronized.
assert_eq!(Barrier::MAX_TASKS, 63);

let barrier = Arc::new(Barrier::with_count(8));

let mut threads = Vec::new();

for _ in 0..8 {
    let barrier = barrier.clone();
    threads.push(thread::spawn(move || {
        for _ in 0..4 {
            barrier.wait_sync();
        }
    }));
}

for thread in threads {
    thread.join().unwrap();
}
```

## Semaphore

`saa::Semaphore` is a synchronization primitive that allows a fixed number of threads to access a resource concurrently.

```rust
use saa::Semaphore;

// At most `63` concurrent tasks/threads can be synchronized.
assert_eq!(Semaphore::MAX_PERMITS, 63);

let semaphore = Semaphore::default();

semaphore.acquire_many_sync(Semaphore::MAX_PERMITS - 1);

assert!(semaphore.try_acquire());
assert!(!semaphore.try_acquire());

assert!(semaphore.release());
assert!(!semaphore.release_many(Semaphore::MAX_PERMITS));
assert!(semaphore.release_many(Semaphore::MAX_PERMITS - 1));

async {
    semaphore.acquire_async().await;
    assert!(semaphore.release());
};
```

## Gate

`saa::Gate` is an unbounded barrier that can be opened or sealed manually as needed.

```rust
use std::sync::Arc;
use std::thread;

use saa::Gate;
use saa::gate::State;

let gate = Arc::new(Gate::default());

let mut threads = Vec::new();

for _ in 0..4 {
    let gate = gate.clone();
    threads.push(thread::spawn(move || {
        assert_eq!(gate.enter_sync(), Ok(State::Controlled));
    }));
}

let mut count = 0;
while count != 4 {
    if let Ok(n) = gate.permit() {
        count += n;
    }
}

for thread in threads {
    thread.join().unwrap();
}
```

## Pager

`saa::Pager` enables remotely waiting for a resource to become available.

```rust
use std::pin::pin;

use saa::{Gate, Pager};
use saa::gate::State;

let gate = Gate::default();

let mut pinned_pager = pin!(Pager::default());

assert!(gate.register_pager(&mut pinned_pager, true));
assert_eq!(gate.open().1, 1);

assert_eq!(pinned_pager.poll_sync(), Ok(State::Open));
```

## Notes

Using synchronous methods in an asynchronous context may lead to deadlocks. Consider a scenario where an asynchronous runtime uses two threads to execute three tasks.

* ThreadId(0): `task-0: share-waiting / pending` || `task-1: "synchronous"-lock-waiting`.
* ThreadId(1): `task-2: release-lock / ready: wake-up task-0` -> `task-2: lock-waiting / pending`.

In this example, `task-0` has logically acquired a shared lock transferred from `task-2`; however, it may remain in the task queue indefinitely depending on the task scheduling policy.

## [Changelog](https://codeberg.org/wvwwvwwv/synchronous-and-asynchronous/src/branch/main/CHANGELOG.md)