File: sync_primitive.rs

package info (click to toggle)
rust-saa 5.4.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 372 kB
  • sloc: makefile: 2
file content (322 lines) | stat: -rw-r--r-- 13,047 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
//! Define base operations for synchronization primitives.

use std::pin::{Pin, pin};
use std::ptr::{addr_of, null, with_exposed_provenance};
#[cfg(not(feature = "loom"))]
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release};
#[cfg(not(feature = "loom"))]
use std::thread::yield_now;

#[cfg(feature = "loom")]
use loom::sync::atomic::AtomicUsize;
#[cfg(feature = "loom")]
use loom::thread::yield_now;

use crate::opcode::Opcode;
use crate::wait_queue::{Entry, WaitQueue};

/// Defines base operations for synchronization primitives.
pub(crate) trait SyncPrimitive: Sized {
    /// Returns a reference to the state.
    fn state(&self) -> &AtomicUsize;

    /// Returns the maximum number of shared owners.
    fn max_shared_owners() -> usize;

    /// Called when an enqueued wait queue entry is being dropped without acknowledging the result.
    fn drop_wait_queue_entry(entry: &Entry);

    /// Converts a reference to `Self` into a memory address.
    #[inline]
    fn addr(&self) -> usize {
        let self_ptr: *const Self = addr_of!(*self);
        self_ptr.expose_provenance()
    }

    /// Tries to push a wait queue entry into the wait queue.
    #[must_use]
    fn try_push_wait_queue_entry(&self, wait_queue: Pin<&WaitQueue>, state: usize) -> bool {
        let anchor_ptr = wait_queue.anchor_ptr().0;
        let anchor_addr = anchor_ptr.expose_provenance();
        debug_assert_eq!(anchor_addr & (!WaitQueue::ADDR_MASK), 0);

        let tail_anchor_ptr = WaitQueue::to_anchor_ptr(state);
        wait_queue
            .entry()
            .update_next_entry_anchor_ptr(tail_anchor_ptr);

        // The anchor pointer, instead of an entry pointer, is stored in the state.
        let next_state = (state & (!WaitQueue::ADDR_MASK)) | anchor_addr;
        if self
            .state()
            .compare_exchange(state, next_state, AcqRel, Acquire)
            .is_ok()
        {
            // The entry cannot be dropped until the result is acknowledged.
            wait_queue.entry().set_pollable();
            true
        } else {
            false
        }
    }

    /// Waits for the desired resource synchronously.
    fn wait_resources_sync<F: FnOnce()>(
        &self,
        state: usize,
        opcode: Opcode,
        begin_wait: F,
    ) -> Result<u8, F> {
        debug_assert!(state & WaitQueue::ADDR_MASK != 0 || state & WaitQueue::DATA_MASK != 0);

        let pinned_wait_queue = pin!(WaitQueue::default());
        pinned_wait_queue.as_ref().construct(self, opcode, true);
        if self.try_push_wait_queue_entry(pinned_wait_queue.as_ref(), state) {
            begin_wait();
            Ok(pinned_wait_queue.entry().poll_result_sync())
        } else {
            Err(begin_wait)
        }
    }

    /// Releases the resource represented by the supplied operation mode.
    ///
    /// Returns `false` if the resource cannot be released.
    fn release_loop(&self, mut state: usize, opcode: Opcode) -> bool {
        while opcode.can_release(state) {
            if state & WaitQueue::ADDR_MASK == 0
                || state & WaitQueue::LOCKED_FLAG == WaitQueue::LOCKED_FLAG
            {
                // Release the resource in-place.
                match self.state().compare_exchange(
                    state,
                    state - opcode.acquired_count(),
                    Release,
                    Relaxed,
                ) {
                    Ok(_) => return true,
                    Err(new_state) => state = new_state,
                }
            } else {
                // The wait queue is not empty and is not being processed.
                let next_state = (state | WaitQueue::LOCKED_FLAG) - opcode.acquired_count();
                if let Err(new_state) = self
                    .state()
                    .compare_exchange(state, next_state, AcqRel, Relaxed)
                {
                    state = new_state;
                    continue;
                }
                self.process_wait_queue(next_state);
                return true;
            }
        }
        false
    }

    /// Processes the wait queue.
    ///
    /// The tail entry of the wait queue is either reset or stays the same.
    fn process_wait_queue(&self, mut state: usize) {
        let mut head_entry_ptr: *const Entry = null();
        let mut unlocked = false;
        while !unlocked {
            debug_assert_eq!(state & WaitQueue::LOCKED_FLAG, WaitQueue::LOCKED_FLAG);

            let anchor_ptr = WaitQueue::to_anchor_ptr(state);
            let tail_entry_ptr = WaitQueue::to_entry_ptr(anchor_ptr);
            if head_entry_ptr.is_null() {
                Entry::iter_forward(tail_entry_ptr, true, |entry, next_entry| {
                    head_entry_ptr = Entry::ref_to_ptr(entry);
                    next_entry.is_none()
                });
            } else {
                Entry::set_prev_ptr(tail_entry_ptr);
            }

            let data = state & WaitQueue::DATA_MASK;
            let mut transferred = 0;
            let mut resolved_entry_ptr: *const Entry = null();
            let mut reset_failed = false;

            Entry::iter_backward(head_entry_ptr, |entry, prev_entry| {
                let desired = entry.opcode().desired_count();
                if data + transferred == 0
                    || data + transferred + desired <= Self::max_shared_owners()
                {
                    // The entry can inherit ownership.
                    let acquired = entry.opcode().acquired_count();
                    debug_assert!(acquired <= desired);
                    if prev_entry.is_some() {
                        transferred += acquired;
                        resolved_entry_ptr = Entry::ref_to_ptr(entry);
                        false
                    } else {
                        // This is the tail of the wait queue: try to reset.
                        debug_assert_eq!(tail_entry_ptr, addr_of!(*entry));
                        if self
                            .state()
                            .compare_exchange(state, data + transferred + acquired, AcqRel, Acquire)
                            .is_err()
                        {
                            // This entry will be processed on the next retry.
                            entry.update_next_entry_anchor_ptr(null());
                            head_entry_ptr = Entry::ref_to_ptr(entry);
                            reset_failed = true;
                            return true;
                        }

                        // The wait queue was reset.
                        unlocked = true;
                        resolved_entry_ptr = Entry::ref_to_ptr(entry);
                        true
                    }
                } else {
                    // Unlink those that have succeeded in acquiring shared ownership.
                    entry.update_next_entry_anchor_ptr(null());
                    head_entry_ptr = Entry::ref_to_ptr(entry);
                    true
                }
            });
            debug_assert!(!reset_failed || !unlocked);

            if !reset_failed && !unlocked {
                unlocked = self
                    .state()
                    .fetch_update(AcqRel, Acquire, |new_state| {
                        let new_data = new_state & WaitQueue::DATA_MASK;
                        debug_assert!(new_data <= data);
                        debug_assert!(new_data + transferred <= WaitQueue::DATA_MASK);

                        if new_data == data {
                            Some((new_state & WaitQueue::ADDR_MASK) | (new_data + transferred))
                        } else {
                            None
                        }
                    })
                    .is_ok();
            }

            if !unlocked {
                state = self.state().fetch_add(transferred, AcqRel) + transferred;
            }

            Entry::iter_forward(resolved_entry_ptr, false, |entry, _next_entry| {
                entry.set_result(0);
                false
            });
        }
    }

    /// Removes a wait queue entry from the wait queue.
    fn remove_wait_queue_entry(
        &self,
        mut state: usize,
        entry_ptr_to_remove: *const Entry,
    ) -> (usize, bool) {
        let mut result = Ok((state, false));

        loop {
            debug_assert_eq!(state & WaitQueue::LOCKED_FLAG, WaitQueue::LOCKED_FLAG);
            debug_assert_ne!(state & WaitQueue::ADDR_MASK, 0);

            let anchor_ptr = WaitQueue::to_anchor_ptr(state);
            let tail_entry_ptr = WaitQueue::to_entry_ptr(anchor_ptr);
            Entry::iter_forward(tail_entry_ptr, true, |entry, next_entry| {
                if Entry::ref_to_ptr(entry) == entry_ptr_to_remove {
                    // Found the entry to remove.
                    let prev_entry_ptr = entry.prev_entry_ptr();
                    if let Some(next_entry) = next_entry {
                        next_entry.update_prev_entry_ptr(prev_entry_ptr);
                    }
                    result = if let Some(prev_entry) = unsafe { prev_entry_ptr.as_ref() } {
                        // Successfully unlinked the target entry without updating the state.
                        prev_entry.update_next_entry_anchor_ptr(entry.next_entry_anchor_ptr());
                        Ok((state, true))
                    } else if let Some(next_entry) = next_entry {
                        // The next entry becomes the new tail of the wait queue.
                        let next_entry_addr = Entry::ref_to_ptr(next_entry).expose_provenance();
                        let next_entry_ptr = with_exposed_provenance(next_entry_addr);
                        let new_tail_ptr = Entry::to_wait_queue_ptr(next_entry_ptr);
                        let new_anchor_ptr = unsafe { (*new_tail_ptr).anchor_ptr().0 };
                        debug_assert_eq!(new_anchor_ptr.addr() & (!WaitQueue::ADDR_MASK), 0);

                        let next_state =
                            (state & (!WaitQueue::ADDR_MASK)) | new_anchor_ptr.expose_provenance();
                        debug_assert_eq!(
                            next_state & WaitQueue::LOCKED_FLAG,
                            WaitQueue::LOCKED_FLAG
                        );

                        self.state()
                            .compare_exchange(state, next_state, AcqRel, Acquire)
                            .map(|_| (next_state, true))
                    } else {
                        // Reset the wait queue and unlock.
                        let next_state = state & WaitQueue::DATA_MASK;
                        self.state()
                            .compare_exchange(state, next_state, AcqRel, Acquire)
                            .map(|_| (next_state, true))
                    };
                    true
                } else {
                    false
                }
            });

            match result {
                Ok((state, removed)) => return (state, removed),
                Err(new_state) => state = new_state,
            }
        }
    }

    /// Removes a [`WaitQueue`] entry that was pushed into the wait queue but has not been
    /// processed.
    fn force_remove_wait_queue_entry(entry: &Entry) {
        let this: &Self = entry.sync_primitive_ref();
        let this_ptr: *const Entry = addr_of!(*entry);

        // Remove the wait queue entry from the wait queue list.
        let mut state = this.state().load(Acquire);
        let mut need_completion = false;
        loop {
            if state & WaitQueue::LOCKED_FLAG == WaitQueue::LOCKED_FLAG {
                // Another thread is processing the wait queue.
                yield_now();
                state = this.state().load(Acquire);
            } else if state & WaitQueue::ADDR_MASK == 0 {
                // The wait queue is empty.
                need_completion = true;
                break;
            } else if let Err(new_state) = this.state().compare_exchange(
                state,
                state | WaitQueue::LOCKED_FLAG,
                AcqRel,
                Acquire,
            ) {
                state = new_state;
            } else {
                let (new_state, removed) =
                    this.remove_wait_queue_entry(state | WaitQueue::LOCKED_FLAG, this_ptr);
                if new_state & WaitQueue::LOCKED_FLAG == WaitQueue::LOCKED_FLAG {
                    // We need to process the wait queue if it is still locked.
                    this.process_wait_queue(new_state);
                }
                if !removed {
                    need_completion = true;
                }
                break;
            }
        }

        if need_completion {
            // The entry was removed by another thread, so it will be completed.
            while !entry.result_finalized() {
                yield_now();
            }
            this.release_loop(state, entry.opcode());
        }
    }
}