1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
|
use std::any::TypeId;
use std::cell::{Cell, UnsafeCell};
use std::fmt;
use std::hash::{BuildHasher, Hash, Hasher};
use std::marker::PhantomData;
use std::num::NonZeroUsize;
use std::path::{Path, PathBuf};
use crossbeam_utils::CachePadded;
use intrusive_collections::{intrusive_adapter, LinkedList, LinkedListLink, UnsafeRef};
use rustc_hash::FxBuildHasher;
use crate::cycle::CycleHeads;
use crate::durability::Durability;
use crate::function::VerifyResult;
use crate::id::{AsId, FromId};
use crate::ingredient::Ingredient;
use crate::plumbing::{IngredientIndices, Jar, ZalsaLocal};
use crate::revision::AtomicRevision;
use crate::sync::{Arc, Mutex, OnceLock};
use crate::table::memo::{MemoTable, MemoTableTypes, MemoTableWithTypesMut};
use crate::table::Slot;
use crate::zalsa::{IngredientIndex, Zalsa};
use crate::{Database, DatabaseKeyIndex, Event, EventKind, Id, Revision};
/// Trait that defines the key properties of an interned struct.
///
/// Implemented by the `#[salsa::interned]` macro when applied to
/// a struct.
pub trait Configuration: Sized + 'static {
const LOCATION: crate::ingredient::Location;
const DEBUG_NAME: &'static str;
// The minimum number of revisions that must pass before a stale value is garbage collected.
#[cfg(test)]
const REVISIONS: NonZeroUsize = NonZeroUsize::new(3).unwrap();
#[cfg(not(test))] // More aggressive garbage collection by default when testing.
const REVISIONS: NonZeroUsize = NonZeroUsize::new(1).unwrap();
/// The fields of the struct being interned.
type Fields<'db>: InternedData;
/// The end user struct
type Struct<'db>: Copy + FromId + AsId;
}
pub trait InternedData: Sized + Eq + Hash + Clone + Sync + Send {}
impl<T: Eq + Hash + Clone + Sync + Send> InternedData for T {}
pub struct JarImpl<C: Configuration> {
phantom: PhantomData<C>,
}
/// The interned ingredient hashes values of type `C::Fields` to produce an `Id`.
///
/// It used to store interned structs but also to store the ID fields of a tracked struct.
/// Interned values are garbage collected and their memory reused based on an LRU heuristic.
pub struct IngredientImpl<C: Configuration> {
/// Index of this ingredient in the database (used to construct database-IDs, etc).
ingredient_index: IngredientIndex,
/// A hasher for the sharded ID maps.
hasher: FxBuildHasher,
/// A shift used to determine the shard for a given hash.
shift: u32,
/// Sharded data that can only be accessed through a lock.
shards: Box<[CachePadded<Mutex<IngredientShard<C>>>]>,
/// A queue of recent revisions in which values were interned.
revision_queue: RevisionQueue<C>,
memo_table_types: Arc<MemoTableTypes>,
_marker: PhantomData<fn() -> C>,
}
struct IngredientShard<C: Configuration> {
/// Maps from data to the existing interned ID for that data.
///
/// This doesn't hold the fields themselves to save memory, instead it points
/// to the slot ID.
key_map: hashbrown::HashTable<Id>,
/// An intrusive linked list for LRU.
lru: LinkedList<ValueAdapter<C>>,
}
impl<C: Configuration> Default for IngredientShard<C> {
fn default() -> Self {
Self {
lru: LinkedList::default(),
key_map: hashbrown::HashTable::new(),
}
}
}
// SAFETY: `LinkedListLink` is `!Sync`, however, the linked list is only accessed through the
// ingredient lock, and values are only ever linked to a single list on the ingredient.
unsafe impl<C: Configuration> Sync for Value<C> {}
intrusive_adapter!(ValueAdapter<C> = UnsafeRef<Value<C>>: Value<C> { link: LinkedListLink } where C: Configuration);
/// Struct storing the interned fields.
pub struct Value<C>
where
C: Configuration,
{
/// The index of the shard containing this value.
shard: u16,
/// An intrusive linked list for LRU.
link: LinkedListLink,
/// The interned fields for this value.
///
/// These are valid for read-only access as long as the lock is held
/// or the value has been validated in the current revision.
fields: UnsafeCell<C::Fields<'static>>,
/// Memos attached to this interned value.
///
/// This is valid for read-only access as long as the lock is held
/// or the value has been validated in the current revision.
memos: UnsafeCell<MemoTable>,
/// Data that can only be accessed while holding the lock for the
/// `key_map` shard containing the value ID.
shared: UnsafeCell<ValueShared>,
}
/// Shared value data can only be read through the lock.
#[repr(Rust, packed)] // Allow `durability` to be stored in the padding of the outer `Value` struct.
struct ValueShared {
/// The interned ID for this value.
///
/// Storing this on the value itself is necessary to identify slots
/// from the LRU list, as well as keep track of the generation.
///
/// Values that are reused increment the ID generation, as if they had
/// allocated a new slot. This eliminates the need for dependency edges
/// on queries that *read* from an interned value, as any memos dependent
/// on the previous value will not match the new ID.
///
/// However, reusing a slot invalidates the previous ID, so dependency edges
/// on queries that *create* an interned value are still required to ensure
/// the value is re-interned with a new ID.
id: Id,
/// The revision the value was most-recently interned in.
last_interned_at: Revision,
/// The minimum durability of all inputs consumed by the creator
/// query prior to creating this interned struct. If any of those
/// inputs changes, then the creator query may create this struct
/// with different values.
durability: Durability,
}
impl ValueShared {
/// Returns `true` if this value slot can be reused when interning, and should be added to the LRU.
fn is_reusable<C: Configuration>(&self) -> bool {
// Garbage collection is disabled.
if C::REVISIONS == IMMORTAL {
return false;
}
// Collecting higher durability values requires invalidating the revision for their
// durability (see `Database::synthetic_write`, which requires a mutable reference to
// the database) to avoid short-circuiting calls to `maybe_changed_after`. This is
// necessary because `maybe_changed_after` for interned values is not "pure"; it updates
// the `last_interned_at` field before validating a given value to ensure that it is not
// reused after read in the current revision.
self.durability == Durability::LOW
}
}
impl<C> Value<C>
where
C: Configuration,
{
/// Fields of this interned struct.
#[cfg(feature = "salsa_unstable")]
pub fn fields(&self) -> &C::Fields<'static> {
// SAFETY: The fact that this function is safe is technically unsound. However, interned
// values are only exposed if they have been validated in the current revision, which
// ensures that they are not reused while being accessed.
unsafe { &*self.fields.get() }
}
/// Returns memory usage information about the interned value.
///
/// # Safety
///
/// The `MemoTable` must belong to a `Value` of the correct type. Additionally, the
/// lock must be held for the shard containing the value.
#[cfg(all(not(feature = "shuttle"), feature = "salsa_unstable"))]
unsafe fn memory_usage(&self, memo_table_types: &MemoTableTypes) -> crate::database::SlotInfo {
// SAFETY: The caller guarantees we hold the lock for the shard containing the value, so we
// have at-least read-only access to the value's memos.
let memos = unsafe { &*self.memos.get() };
// SAFETY: The caller guarantees this is the correct types table.
let memos = unsafe { memo_table_types.attach_memos(memos) };
crate::database::SlotInfo {
debug_name: C::DEBUG_NAME,
size_of_metadata: std::mem::size_of::<Self>() - std::mem::size_of::<C::Fields<'_>>(),
size_of_fields: std::mem::size_of::<C::Fields<'_>>(),
memos: memos.memory_usage(),
}
}
}
impl<C: Configuration> Default for JarImpl<C> {
fn default() -> Self {
Self {
phantom: PhantomData,
}
}
}
impl<C: Configuration> Jar for JarImpl<C> {
fn create_ingredients(
_zalsa: &Zalsa,
first_index: IngredientIndex,
_dependencies: IngredientIndices,
) -> Vec<Box<dyn Ingredient>> {
vec![Box::new(IngredientImpl::<C>::new(first_index)) as _]
}
fn id_struct_type_id() -> TypeId {
TypeId::of::<C::Struct<'static>>()
}
}
impl<C> IngredientImpl<C>
where
C: Configuration,
{
pub fn new(ingredient_index: IngredientIndex) -> Self {
static SHARDS: OnceLock<usize> = OnceLock::new();
let shards = *SHARDS.get_or_init(|| {
let num_cpus = std::thread::available_parallelism()
.map(usize::from)
.unwrap_or(1);
(num_cpus * 4).next_power_of_two()
});
Self {
ingredient_index,
hasher: FxBuildHasher,
memo_table_types: Arc::new(MemoTableTypes::default()),
revision_queue: RevisionQueue::default(),
shift: usize::BITS - shards.trailing_zeros(),
shards: (0..shards).map(|_| Default::default()).collect(),
_marker: PhantomData,
}
}
/// Returns the shard for a given hash.
///
/// Note that this value is guaranteed to be in-bounds for `self.shards`.
#[inline]
fn shard(&self, hash: u64) -> usize {
// https://github.com/xacrimon/dashmap/blob/366ce7e7872866a06de66eb95002fa6cf2c117a7/src/lib.rs#L421
((hash as usize) << 7) >> self.shift
}
/// # Safety
///
/// The `from_internal_data` function must be called to restore the correct lifetime
/// before access.
unsafe fn to_internal_data<'db>(&'db self, data: C::Fields<'db>) -> C::Fields<'static> {
// SAFETY: Guaranteed by caller.
unsafe { std::mem::transmute(data) }
}
fn from_internal_data<'db>(data: &'db C::Fields<'static>) -> &'db C::Fields<'db> {
// SAFETY: It's sound to go from `Data<'static>` to `Data<'db>`. We shrink the
// lifetime here to use a single lifetime in `Lookup::eq(&StructKey<'db>, &C::Data<'db>)`
unsafe { std::mem::transmute(data) }
}
/// Intern data to a unique reference.
///
/// If `key` is already interned, returns the existing [`Id`] for the interned data without
/// invoking `assemble`.
///
/// Otherwise, invokes `assemble` with the given `key` and the [`Id`] to be allocated for this
/// interned value. The resulting [`C::Data`] will then be interned.
///
/// Note: Using the database within the `assemble` function may result in a deadlock if
/// the database ends up trying to intern or allocate a new value.
pub fn intern<'db, Key>(
&'db self,
db: &'db dyn crate::Database,
key: Key,
assemble: impl FnOnce(Id, Key) -> C::Fields<'db>,
) -> C::Struct<'db>
where
Key: Hash,
C::Fields<'db>: HashEqLike<Key>,
{
FromId::from_id(self.intern_id(db, key, assemble))
}
/// Intern data to a unique reference.
///
/// If `key` is already interned, returns the existing [`Id`] for the interned data without
/// invoking `assemble`.
///
/// Otherwise, invokes `assemble` with the given `key` and the [`Id`] to be allocated for this
/// interned value. The resulting [`C::Data`] will then be interned.
///
/// Note: Using the database within the `assemble` function may result in a deadlock if
/// the database ends up trying to intern or allocate a new value.
pub fn intern_id<'db, Key>(
&'db self,
db: &'db dyn crate::Database,
key: Key,
assemble: impl FnOnce(Id, Key) -> C::Fields<'db>,
) -> crate::Id
where
Key: Hash,
// We'd want the following predicate, but this currently implies `'static` due to a rustc
// bug
// for<'db> C::Data<'db>: HashEqLike<Key>,
// so instead we go with this and transmute the lifetime in the `eq` closure
C::Fields<'db>: HashEqLike<Key>,
{
let (zalsa, zalsa_local) = db.zalsas();
// Record the current revision as active.
let current_revision = zalsa.current_revision();
self.revision_queue.record(current_revision);
// Hash the value before acquiring the lock.
let hash = self.hasher.hash_one(&key);
let shard_index = self.shard(hash);
// SAFETY: `shard_index` is guaranteed to be in-bounds for `self.shards`.
let shard = unsafe { &mut *self.shards.get_unchecked(shard_index).lock() };
let found_value = Cell::new(None);
// SAFETY: We hold the lock for the shard containing the value.
let eq = |id: &_| unsafe { Self::value_eq(*id, &key, zalsa, &found_value) };
// Attempt a fast-path lookup of already interned data.
if let Some(&id) = shard.key_map.find(hash, eq) {
let value = found_value
.get()
.expect("found the interned value, so `found_value` should be set");
let index = self.database_key_index(id);
// SAFETY: We hold the lock for the shard containing the value.
let value_shared = unsafe { &mut *value.shared.get() };
// Validate the value in this revision to avoid reuse.
if { value_shared.last_interned_at } < current_revision {
value_shared.last_interned_at = current_revision;
zalsa.event(&|| {
Event::new(EventKind::DidValidateInternedValue {
key: index,
revision: current_revision,
})
});
if value_shared.is_reusable::<C>() {
// Move the value to the front of the LRU list.
//
// SAFETY: We hold the lock for the shard containing the value, and `value` is
// a reusable value that was previously interned, so is in the list.
unsafe { shard.lru.cursor_mut_from_ptr(value).remove() };
// SAFETY: The value pointer is valid for the lifetime of the database
// and never accessed mutably directly.
unsafe { shard.lru.push_front(UnsafeRef::from_raw(value)) };
}
}
if let Some((_, stamp)) = zalsa_local.active_query() {
let was_reusable = value_shared.is_reusable::<C>();
// Record the maximum durability across all queries that intern this value.
value_shared.durability = std::cmp::max(value_shared.durability, stamp.durability);
// If the value is no longer reusable, i.e. the durability increased, remove it
// from the LRU.
if was_reusable && !value_shared.is_reusable::<C>() {
// SAFETY: We hold the lock for the shard containing the value, and `value`
// was previously reusable, so is in the list.
unsafe { shard.lru.cursor_mut_from_ptr(value).remove() };
}
}
// Record a dependency on the value.
//
// See `intern_id_cold` for why we need to use `current_revision` here. Note that just
// because this value was previously interned does not mean it was previously interned
// by *our query*, so the same considerations apply.
zalsa_local.report_tracked_read_simple(
index,
value_shared.durability,
current_revision,
);
return value_shared.id;
}
// Fill up the table for the first few revisions without attempting garbage collection.
if !self.revision_queue.is_primed() {
return self.intern_id_cold(
db,
key,
zalsa,
zalsa_local,
assemble,
shard,
shard_index,
hash,
);
}
// Otherwise, try to reuse a stale slot.
let mut cursor = shard.lru.back_mut();
while let Some(value) = cursor.get() {
// SAFETY: We hold the lock for the shard containing the value.
let value_shared = unsafe { &mut *value.shared.get() };
// The value must not have been read in the current revision to be collected
// soundly, but we also do not want to collect values that have been read recently.
//
// Note that the list is sorted by LRU, so if the tail of the list is not stale, we
// will not find any stale slots.
if !self.revision_queue.is_stale(value_shared.last_interned_at) {
break;
}
// We should never reuse a value that was accessed in the current revision.
debug_assert!({ value_shared.last_interned_at } < current_revision);
// Record the durability of the current query on the interned value.
let (durability, last_interned_at) = zalsa_local
.active_query()
.map(|(_, stamp)| (stamp.durability, current_revision))
// If there is no active query this durability does not actually matter.
// `last_interned_at` needs to be `Revision::MAX`, see the `intern_access_in_different_revision` test.
.unwrap_or((Durability::MAX, Revision::max()));
let old_id = value_shared.id;
// Increment the generation of the ID, as if we allocated a new slot.
//
// If the ID is at its maximum generation, we are forced to leak the slot.
let Some(new_id) = value_shared.id.next_generation() else {
// Remove the value from the LRU list as we will never be able to
// collect it.
cursor.remove().unwrap();
// Retry with the previous element.
cursor = shard.lru.back_mut();
continue;
};
// Mark the slot as reused.
*value_shared = ValueShared {
id: new_id,
durability,
last_interned_at,
};
let index = self.database_key_index(value_shared.id);
// Record a dependency on the new value.
//
// See `intern_id_cold` for why we need to use `current_revision` here.
zalsa_local.report_tracked_read_simple(
index,
value_shared.durability,
current_revision,
);
zalsa.event(&|| {
Event::new(EventKind::DidReuseInternedValue {
key: index,
revision: current_revision,
})
});
// Remove the value from the LRU list.
//
// SAFETY: The value pointer is valid for the lifetime of the database.
let value = unsafe { &*UnsafeRef::into_raw(cursor.remove().unwrap()) };
// SAFETY: We hold the lock for the shard containing the value, and the
// value has not been interned in the current revision, so no references to
// it can exist.
let old_fields = unsafe { &mut *value.fields.get() };
// Remove the previous value from the ID map.
//
// Note that while the ID stays the same when a slot is reused, the fields,
// and thus the hash, will change, so we need to re-insert the value into the
// map. Crucially, we know that the hashes for the old and new fields both map
// to the same shard, because we determined the initial shard based on the new
// fields and only accessed the LRU list for that shard.
let old_hash = self.hasher.hash_one(&*old_fields);
shard
.key_map
.find_entry(old_hash, |found_id: &Id| *found_id == old_id)
.expect("interned value in LRU so must be in key_map")
.remove();
// Update the fields.
//
// SAFETY: We call `from_internal_data` to restore the correct lifetime before access.
*old_fields = unsafe { self.to_internal_data(assemble(new_id, key)) };
// SAFETY: We hold the lock for the shard containing the value.
let hasher = |id: &_| unsafe { self.value_hash(*id, zalsa) };
// Insert the new value into the ID map.
shard.key_map.insert_unique(hash, new_id, hasher);
// Free the memos associated with the previous interned value.
//
// SAFETY: We hold the lock for the shard containing the value, and the
// value has not been interned in the current revision, so no references to
// it can exist.
let mut memo_table = unsafe { std::mem::take(&mut *value.memos.get()) };
// SAFETY: The memo table belongs to a value that we allocated, so it has the
// correct type.
unsafe { self.clear_memos(zalsa, &mut memo_table, new_id) };
if value_shared.is_reusable::<C>() {
// Move the value to the front of the LRU list.
//
// SAFETY: The value pointer is valid for the lifetime of the database.
// and never accessed mutably directly.
shard.lru.push_front(unsafe { UnsafeRef::from_raw(value) });
}
return new_id;
}
// If we could not find any stale slots, we are forced to allocate a new one.
self.intern_id_cold(
db,
key,
zalsa,
zalsa_local,
assemble,
shard,
shard_index,
hash,
)
}
/// The cold path for interning a value, allocating a new slot.
///
/// Returns `true` if the current thread interned the value.
#[allow(clippy::too_many_arguments)]
fn intern_id_cold<'db, Key>(
&'db self,
_db: &'db dyn crate::Database,
key: Key,
zalsa: &Zalsa,
zalsa_local: &ZalsaLocal,
assemble: impl FnOnce(Id, Key) -> C::Fields<'db>,
shard: &mut IngredientShard<C>,
shard_index: usize,
hash: u64,
) -> crate::Id
where
Key: Hash,
C::Fields<'db>: HashEqLike<Key>,
{
let current_revision = zalsa.current_revision();
// Record the durability of the current query on the interned value.
let (durability, last_interned_at) = zalsa_local
.active_query()
.map(|(_, stamp)| (stamp.durability, current_revision))
// If there is no active query this durability does not actually matter.
// `last_interned_at` needs to be `Revision::MAX`, see the `intern_access_in_different_revision` test.
.unwrap_or((Durability::MAX, Revision::max()));
// Allocate the value slot.
let id = zalsa_local.allocate(zalsa, self.ingredient_index, |id| Value::<C> {
shard: shard_index as u16,
link: LinkedListLink::new(),
memos: UnsafeCell::new(MemoTable::default()),
// SAFETY: We call `from_internal_data` to restore the correct lifetime before access.
fields: UnsafeCell::new(unsafe { self.to_internal_data(assemble(id, key)) }),
shared: UnsafeCell::new(ValueShared {
id,
durability,
last_interned_at,
}),
});
let value = zalsa.table().get::<Value<C>>(id);
// SAFETY: We hold the lock for the shard containing the value.
let value_shared = unsafe { &mut *value.shared.get() };
if value_shared.is_reusable::<C>() {
// Add the value to the front of the LRU list.
//
// SAFETY: The value pointer is valid for the lifetime of the database
// and never accessed mutably directly.
shard.lru.push_front(unsafe { UnsafeRef::from_raw(value) });
}
// SAFETY: We hold the lock for the shard containing the value.
let hasher = |id: &_| unsafe { self.value_hash(*id, zalsa) };
// Insert the value into the ID map.
shard.key_map.insert_unique(hash, id, hasher);
debug_assert_eq!(hash, {
let value = zalsa.table().get::<Value<C>>(id);
// SAFETY: We hold the lock for the shard containing the value.
unsafe { self.hasher.hash_one(&*value.fields.get()) }
});
let index = self.database_key_index(id);
// Record a dependency on the newly interned value.
//
// Note that the ID is unique to this use of the interned slot, so it seems logical to use
// `Revision::start()` here. However, it is possible that the ID we read is different from
// the previous execution of this query if the previous slot has been reused. In that case,
// the query has changed without a corresponding input changing. Using `current_revision`
// for dependencies on interned values encodes the fact that interned IDs are not stable
// across revisions.
zalsa_local.report_tracked_read_simple(index, durability, current_revision);
zalsa.event(&|| {
Event::new(EventKind::DidInternValue {
key: index,
revision: current_revision,
})
});
id
}
/// Clears the given memo table.
///
/// # Safety
///
/// The `MemoTable` must belong to a `Value` of the correct type.
pub(crate) unsafe fn clear_memos(&self, zalsa: &Zalsa, memo_table: &mut MemoTable, id: Id) {
// SAFETY: The caller guarantees this is the correct types table.
let table = unsafe { self.memo_table_types.attach_memos_mut(memo_table) };
// `Database::salsa_event` is a user supplied callback which may panic
// in that case we need a drop guard to free the memo table
struct TableDropGuard<'a>(MemoTableWithTypesMut<'a>);
impl Drop for TableDropGuard<'_> {
fn drop(&mut self) {
// SAFETY: We have `&mut MemoTable`, so no more references to these memos exist and we are good
// to drop them.
unsafe { self.0.drop() };
}
}
let mut table_guard = TableDropGuard(table);
// SAFETY: We have `&mut MemoTable`, so no more references to these memos exist and we are good
// to drop them.
unsafe {
table_guard.0.take_memos(|memo_ingredient_index, memo| {
let ingredient_index =
zalsa.ingredient_index_for_memo(self.ingredient_index, memo_ingredient_index);
let executor = DatabaseKeyIndex::new(ingredient_index, id);
zalsa.event(&|| Event::new(EventKind::DidDiscard { key: executor }));
for stale_output in memo.origin().outputs() {
stale_output.remove_stale_output(zalsa, executor);
}
})
};
std::mem::forget(table_guard);
}
// Hashes the value by its fields.
//
// # Safety
//
// The lock must be held for the shard containing the value.
unsafe fn value_hash<'db>(&'db self, id: Id, zalsa: &'db Zalsa) -> u64 {
// This closure is only called if the table is resized. So while it's expensive
// to lookup all values, it will only happen rarely.
let value = zalsa.table().get::<Value<C>>(id);
// SAFETY: We hold the lock for the shard containing the value.
unsafe { self.hasher.hash_one(&*value.fields.get()) }
}
// Compares the value by its fields to the given key.
//
// # Safety
//
// The lock must be held for the shard containing the value.
unsafe fn value_eq<'db, Key>(
id: Id,
key: &Key,
zalsa: &'db Zalsa,
found_value: &Cell<Option<&'db Value<C>>>,
) -> bool
where
C::Fields<'db>: HashEqLike<Key>,
{
let value = zalsa.table().get::<Value<C>>(id);
found_value.set(Some(value));
// SAFETY: We hold the lock for the shard containing the value.
let fields = unsafe { &*value.fields.get() };
HashEqLike::eq(Self::from_internal_data(fields), key)
}
/// Returns the database key index for an interned value with the given id.
#[inline]
pub fn database_key_index(&self, id: Id) -> DatabaseKeyIndex {
DatabaseKeyIndex::new(self.ingredient_index, id)
}
/// Lookup the data for an interned value based on its ID.
pub fn data<'db>(&'db self, db: &'db dyn Database, id: Id) -> &'db C::Fields<'db> {
let zalsa = db.zalsa();
let value = zalsa.table().get::<Value<C>>(id);
debug_assert!(
{
let _shard = self.shards[value.shard as usize].lock();
// SAFETY: We hold the lock for the shard containing the value.
let value_shared = unsafe { &mut *value.shared.get() };
let last_changed_revision = zalsa.last_changed_revision(value_shared.durability);
({ value_shared.last_interned_at }) >= last_changed_revision
},
"Data was not interned in the latest revision for its durability."
);
// SAFETY: Interned values are only exposed if they have been validated in the
// current revision, as checked by the assertion above, which ensures that they
// are not reused while being accessed.
unsafe { Self::from_internal_data(&*value.fields.get()) }
}
/// Lookup the fields from an interned struct.
///
/// Note that this is not "leaking" since no dependency edge is required.
pub fn fields<'db>(&'db self, db: &'db dyn Database, s: C::Struct<'db>) -> &'db C::Fields<'db> {
self.data(db, AsId::as_id(&s))
}
pub fn reset(&mut self, db: &mut dyn Database) {
_ = db.zalsa_mut();
for shard in self.shards.iter() {
// We can clear the key maps now that we have cancelled all other handles.
shard.lock().key_map.clear();
}
}
#[cfg(feature = "salsa_unstable")]
/// Returns all data corresponding to the interned struct.
pub fn entries<'db>(
&'db self,
db: &'db dyn crate::Database,
) -> impl Iterator<Item = &'db Value<C>> {
db.zalsa().table().slots_of::<Value<C>>()
}
}
impl<C> Ingredient for IngredientImpl<C>
where
C: Configuration,
{
fn location(&self) -> &'static crate::ingredient::Location {
&C::LOCATION
}
fn ingredient_index(&self) -> IngredientIndex {
self.ingredient_index
}
unsafe fn maybe_changed_after(
&self,
db: &dyn Database,
input: Id,
_revision: Revision,
_cycle_heads: &mut CycleHeads,
) -> VerifyResult {
let zalsa = db.zalsa();
// Record the current revision as active.
let current_revision = zalsa.current_revision();
self.revision_queue.record(current_revision);
let value = zalsa.table().get::<Value<C>>(input);
// SAFETY: `value.shard` is guaranteed to be in-bounds for `self.shards`.
let _shard = unsafe { self.shards.get_unchecked(value.shard as usize) }.lock();
// SAFETY: We hold the lock for the shard containing the value.
let value_shared = unsafe { &mut *value.shared.get() };
// The slot was reused.
if value_shared.id.generation() > input.generation() {
return VerifyResult::Changed;
}
// Validate the value for the current revision to avoid reuse.
value_shared.last_interned_at = current_revision;
zalsa.event(&|| {
let index = self.database_key_index(input);
Event::new(EventKind::DidValidateInternedValue {
key: index,
revision: current_revision,
})
});
// Any change to an interned value results in a new ID generation.
VerifyResult::unchanged()
}
fn debug_name(&self) -> &'static str {
C::DEBUG_NAME
}
fn memo_table_types(&self) -> Arc<MemoTableTypes> {
self.memo_table_types.clone()
}
/// Returns memory usage information about any interned values.
#[cfg(all(not(feature = "shuttle"), feature = "salsa_unstable"))]
fn memory_usage(&self, db: &dyn Database) -> Option<Vec<crate::database::SlotInfo>> {
use parking_lot::lock_api::RawMutex;
for shard in self.shards.iter() {
// SAFETY: We do not hold any active mutex guards.
unsafe { shard.raw().lock() };
}
let memory_usage = self
.entries(db)
// SAFETY: The memo table belongs to a value that we allocated, so it
// has the correct type. Additionally, we are holding the locks for all shards.
.map(|value| unsafe { value.memory_usage(&self.memo_table_types) })
.collect();
for shard in self.shards.iter() {
// SAFETY: We acquired the locks for all shards.
unsafe { shard.raw().unlock() };
}
Some(memory_usage)
}
}
impl<C> std::fmt::Debug for IngredientImpl<C>
where
C: Configuration,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct(std::any::type_name::<Self>())
.field("index", &self.ingredient_index)
.finish()
}
}
// SAFETY: `Value<C>` is our private type branded over the unique configuration `C`.
unsafe impl<C> Slot for Value<C>
where
C: Configuration,
{
#[inline(always)]
unsafe fn memos(&self, _current_revision: Revision) -> &MemoTable {
// SAFETY: The fact that we have a reference to the `Value` means it must
// have been interned, and thus validated, in the current revision.
unsafe { &*self.memos.get() }
}
#[inline(always)]
fn memos_mut(&mut self) -> &mut MemoTable {
self.memos.get_mut()
}
}
/// Keep track of revisions in which interned values were read, to determine staleness.
///
/// An interned value is considered stale if it has not been read in the past `REVS`
/// revisions. However, we only consider revisions in which interned values were actually
/// read, as revisions may be created in bursts.
struct RevisionQueue<C> {
lock: Mutex<()>,
// Once `feature(generic_const_exprs)` is stable this can just be an array.
revisions: Box<[AtomicRevision]>,
_configuration: PhantomData<fn() -> C>,
}
// `#[salsa::interned(revisions = usize::MAX)]` disables garbage collection.
const IMMORTAL: NonZeroUsize = NonZeroUsize::MAX;
impl<C: Configuration> Default for RevisionQueue<C> {
fn default() -> RevisionQueue<C> {
let revisions = if C::REVISIONS == IMMORTAL {
Box::default()
} else {
(0..C::REVISIONS.get())
.map(|_| AtomicRevision::start())
.collect()
};
RevisionQueue {
lock: Mutex::new(()),
revisions,
_configuration: PhantomData,
}
}
}
impl<C: Configuration> RevisionQueue<C> {
/// Record the given revision as active.
#[inline]
fn record(&self, revision: Revision) {
// Garbage collection is disabled.
if C::REVISIONS == IMMORTAL {
return;
}
// Fast-path: We already recorded this revision.
if self.revisions[0].load() >= revision {
return;
}
self.record_cold(revision);
}
#[cold]
fn record_cold(&self, revision: Revision) {
let _lock = self.lock.lock();
// Otherwise, update the queue, maintaining sorted order.
//
// Note that this should only happen once per revision.
for i in (1..C::REVISIONS.get()).rev() {
self.revisions[i].store(self.revisions[i - 1].load());
}
self.revisions[0].store(revision);
}
/// Returns `true` if the given revision is old enough to be considered stale.
#[inline]
fn is_stale(&self, revision: Revision) -> bool {
// Garbage collection is disabled.
if C::REVISIONS == IMMORTAL {
return false;
}
let oldest = self.revisions[C::REVISIONS.get() - 1].load();
// If we have not recorded `REVS` revisions yet, nothing can be stale.
if oldest == Revision::start() {
return false;
}
revision < oldest
}
/// Returns `true` if `C::REVISIONS` revisions have been recorded as active,
/// i.e. enough data has been recorded to start garbage collection.
#[inline]
fn is_primed(&self) -> bool {
// Garbage collection is disabled.
if C::REVISIONS == IMMORTAL {
return false;
}
self.revisions[C::REVISIONS.get() - 1].load() > Revision::start()
}
}
/// A trait for types that hash and compare like `O`.
pub trait HashEqLike<O> {
fn hash<H: Hasher>(&self, h: &mut H);
fn eq(&self, data: &O) -> bool;
}
/// The `Lookup` trait is a more flexible variant on [`std::borrow::Borrow`]
/// and [`std::borrow::ToOwned`].
///
/// It is implemented by "some type that can be used as the lookup key for `O`".
/// This means that `self` can be hashed and compared for equality with values
/// of type `O` without actually creating an owned value. It `self` needs to be interned,
/// it can be converted into an equivalent value of type `O`.
///
/// The canonical example is `&str: Lookup<String>`. However, this example
/// alone can be handled by [`std::borrow::Borrow`][]. In our case, we may have
/// multiple keys accumulated into a struct, like `ViewStruct: Lookup<(K1, ...)>`,
/// where `struct ViewStruct<L1: Lookup<K1>...>(K1...)`. The `Borrow` trait
/// requires that `&(K1...)` be convertible to `&ViewStruct` which just isn't
/// possible. `Lookup` instead offers direct `hash` and `eq` methods.
pub trait Lookup<O> {
fn into_owned(self) -> O;
}
impl<T> Lookup<T> for T {
fn into_owned(self) -> T {
self
}
}
impl<T> HashEqLike<T> for T
where
T: Hash + Eq,
{
fn hash<H: Hasher>(&self, h: &mut H) {
Hash::hash(self, &mut *h);
}
fn eq(&self, data: &T) -> bool {
self == data
}
}
impl<T> HashEqLike<T> for &T
where
T: Hash + Eq,
{
fn hash<H: Hasher>(&self, h: &mut H) {
Hash::hash(*self, &mut *h);
}
fn eq(&self, data: &T) -> bool {
**self == *data
}
}
impl<T> HashEqLike<&T> for T
where
T: Hash + Eq,
{
fn hash<H: Hasher>(&self, h: &mut H) {
Hash::hash(self, &mut *h);
}
fn eq(&self, data: &&T) -> bool {
*self == **data
}
}
impl<T> Lookup<T> for &T
where
T: Clone,
{
fn into_owned(self) -> T {
Clone::clone(self)
}
}
impl<'a, T> HashEqLike<&'a T> for Box<T>
where
T: ?Sized + Hash + Eq,
Box<T>: From<&'a T>,
{
fn hash<H: Hasher>(&self, h: &mut H) {
Hash::hash(self, &mut *h)
}
fn eq(&self, data: &&T) -> bool {
**self == **data
}
}
impl<'a, T> Lookup<Box<T>> for &'a T
where
T: ?Sized + Hash + Eq,
Box<T>: From<&'a T>,
{
fn into_owned(self) -> Box<T> {
Box::from(self)
}
}
impl<'a, T> HashEqLike<&'a T> for Arc<T>
where
T: ?Sized + Hash + Eq,
Arc<T>: From<&'a T>,
{
fn hash<H: Hasher>(&self, h: &mut H) {
Hash::hash(&**self, &mut *h)
}
fn eq(&self, data: &&T) -> bool {
**self == **data
}
}
impl<'a, T> Lookup<Arc<T>> for &'a T
where
T: ?Sized + Hash + Eq,
Arc<T>: From<&'a T>,
{
fn into_owned(self) -> Arc<T> {
Arc::from(self)
}
}
impl Lookup<String> for &str {
fn into_owned(self) -> String {
self.to_owned()
}
}
impl HashEqLike<&str> for String {
fn hash<H: Hasher>(&self, h: &mut H) {
Hash::hash(self, &mut *h)
}
fn eq(&self, data: &&str) -> bool {
self == *data
}
}
impl<A, T: Hash + Eq + PartialEq<A>> HashEqLike<&[A]> for Vec<T> {
fn hash<H: Hasher>(&self, h: &mut H) {
Hash::hash(self, h);
}
fn eq(&self, data: &&[A]) -> bool {
self.len() == data.len() && data.iter().enumerate().all(|(i, a)| &self[i] == a)
}
}
impl<A: Hash + Eq + PartialEq<T> + Clone + Lookup<T>, T> Lookup<Vec<T>> for &[A] {
fn into_owned(self) -> Vec<T> {
self.iter().map(|a| Lookup::into_owned(a.clone())).collect()
}
}
impl<const N: usize, A, T: Hash + Eq + PartialEq<A>> HashEqLike<[A; N]> for Vec<T> {
fn hash<H: Hasher>(&self, h: &mut H) {
Hash::hash(self, h);
}
fn eq(&self, data: &[A; N]) -> bool {
self.len() == data.len() && data.iter().enumerate().all(|(i, a)| &self[i] == a)
}
}
impl<const N: usize, A: Hash + Eq + PartialEq<T> + Clone + Lookup<T>, T> Lookup<Vec<T>> for [A; N] {
fn into_owned(self) -> Vec<T> {
self.into_iter()
.map(|a| Lookup::into_owned(a.clone()))
.collect()
}
}
impl HashEqLike<&Path> for PathBuf {
fn hash<H: Hasher>(&self, h: &mut H) {
Hash::hash(self, h);
}
fn eq(&self, data: &&Path) -> bool {
self == data
}
}
impl Lookup<PathBuf> for &Path {
fn into_owned(self) -> PathBuf {
self.to_owned()
}
}
|