1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
#[cfg(test)]
mod integration {
use std::path;
use assert_cmd::Command;
use predicates::prelude::*;
use sequoia_openpgp as openpgp;
use openpgp::Cert;
use openpgp::Packet;
use openpgp::parse::Parse;
fn dir() -> path::PathBuf {
path::Path::new("tests").join("data")
}
// passwords: one '-p' option per element.
// required_fixes: the number of fixes (= new top-level signatures) needed.
// expected_fixes: the number of them that we can create.
fn t(base: &str, prv: Option<&str>, passwords: &[&str],
required_fixes: usize, expected_fixes: usize)
{
assert!(required_fixes >= expected_fixes);
let dir = dir();
let mut suffixes = vec![ "pub" ];
if let Some(prv) = prv {
suffixes.push(prv);
}
for suffix in suffixes.iter() {
// Lint it.
let filename = &format!("{}-{}.pgp", base, suffix);
eprintln!("Linting {}", filename);
Command::cargo_bin("sq-keyring-linter").unwrap()
.current_dir(&dir)
.arg(filename)
.assert()
.code(if required_fixes > 0 { 2 } else { 0 });
// Fix it.
let filename = &format!("{}-{}.pgp", base, suffix);
eprint!("Fixing {}", filename);
if passwords.len() > 0 {
eprint!(" (passwords: ");
for (i, p) in passwords.iter().enumerate() {
if i > 0 {
eprint!(", ");
}
eprint!("{:?}", p)
}
eprint!(")");
}
eprintln!(".");
let expected_fixes = if suffix == &"pub" {
// We only have public key material: we won't be able
// to fix anything.
0
} else {
expected_fixes
};
let mut cmd = Command::cargo_bin("sq-keyring-linter").unwrap();
let mut cmd = cmd.current_dir(&dir)
.args(&[ "--fix", &format!("{}-{}.pgp", base, suffix)]);
for p in passwords.iter() {
cmd = cmd.arg("-p").arg(p)
}
cmd.assert()
// If not everything can be fixed, then --fix's exit code is 3.
.code(if expected_fixes == required_fixes { 0 } else { 3 })
.stdout(predicate::function(|output: &[u8]| -> bool {
if expected_fixes == 0 {
// If there are no fixes, nothing is printed.
output == b""
} else {
// We got a certificate on stdout. Pass it
// through the linter.
Command::cargo_bin("sq-keyring-linter").unwrap()
.current_dir(&dir)
.arg("-")
.write_stdin(output)
.assert()
.code(
if expected_fixes == required_fixes {
// Everything should have been fixed.
0
} else {
// There are still issues.
2
});
// Check that the number of new signatures equals
// the number of expected new signatures.
let orig_sigs: isize =
Cert::from_file(dir.clone().join(filename)).unwrap()
.into_packets()
.map(|p| {
if let Packet::Signature(_) = p {
1
} else {
0
}
})
.sum();
let fixed_sigs: isize = Cert::from_bytes(output)
.map(|cert| {
cert.into_packets()
.map(|p| {
match p {
Packet::Signature(_) => 1,
Packet::SecretKey(_)
| Packet::SecretSubkey(_) =>
panic!("Secret key material \
should not be exported!"),
_ => 0,
}
})
.sum()
})
.map_err(|err| {
eprintln!("Parsing fixed certificate: {}", err);
0
})
.unwrap();
let fixes = fixed_sigs - orig_sigs;
if expected_fixes as isize != fixes {
eprintln!("Expected {} fixes, \
found {} additional signatures",
expected_fixes, fixes);
false
} else {
true
}
}
}));
}
}
#[test]
fn known_good() {
t("gnupg-rsa-normal", Some("priv"), &[], 0, 0);
t("gnupg-ecc-normal", Some("priv"), &[], 0, 0);
}
#[test]
fn userid_certification() {
// User ID: SHA256
// User ID: SHA1
// Enc Subkey: SHA256
t("sha1-userid", Some("priv"), &[], 1, 1);
}
#[test]
fn revoked_userid_certification() {
// A revoked User ID shouldn't be updated.
// User ID: SHA256
// User ID: SHA1 (revoked)
// Enc Subkey: SHA256
t("sha1-userid-revoked", Some("priv"), &[], 0, 0);
}
#[test]
fn signing_subkey_binding_signature() {
// User ID: SHA256
// Enc Subkey: SHA256
// Sig Subkey: SHA1
t("sha1-signing-subkey", Some("priv"), &[], 1, 1);
}
#[test]
fn encryption_subkey_binding_signature() {
// User ID: SHA256
// Enc Subkey: SHA256
// Enc Subkey: SHA1
t("sha1-encryption-subkey", Some("priv"), &[], 1, 1);
}
#[test]
fn subkey_backsig() {
// User ID: SHA256
// Enc Subkey: SHA256
// Sig Subkey: SHA256, backsig: SHA1
t("sha1-backsig-signing-subkey", Some("priv"), &[], 1, 1);
}
#[test]
fn all_bad() {
// User ID: SHA1
// Enc Subkey: SHA1
t("only-sha1", Some("priv"), &[], 2, 2);
// We don't fix MD5 signatures.
//
// User ID: MD5
// Enc Subkey: MD5
t("only-md5", Some("priv"), &[], 2, 0);
}
#[test]
fn passwords() {
// User ID: SHA1
// Enc Subkey: SHA1
// Wrong password.
t("all-sha1-password-Foobar", Some("priv"), &["foobar"], 2, 0);
// Right password.
t("all-sha1-password-Foobar", Some("priv"), &["Foobar"], 2, 2);
// Try multiple passwords.
t("all-sha1-password-Foobar", Some("priv"), &["Foobar", "bar"], 2, 2);
t("all-sha1-password-Foobar", Some("priv"), &["bar", "Foobar"], 2, 2);
}
#[test]
fn multiple_passwords() {
// The primary is encrypted with foo and the signing subkey
// with bar. We need to provide both, because the signing
// subkey needs its backsig updated.
// User ID: SHA256
// Enc Subkey: SHA256
// Enc Subkey: SHA1
// Sig Subkey: SHA1
// We only have the password for the signing subkey: we can't
// update anything.
t("multiple-passwords", Some("priv"), &["bar", "Foobar"], 2, 0);
// We only have the password for the primary key: we can't
// update the backsig.
t("multiple-passwords", Some("priv"), &["foo", "Foobar"], 2, 1);
// We have all passwords: we can fix everything.
t("multiple-passwords", Some("priv"), &["bar", "Foobar", "foo"], 2, 2);
}
#[test]
fn offline_subkeys() {
// The User ID, the encryption subkey, and the signing subkey
// all need new signatures. With just the primary key, we are
// able to create two of the three required signatures.
// User ID: SHA1
// Enc Subkey: SHA1
// Sig Subkey: SHA1
// We can't update the backsig.
t("sha1-offline-subkeys", Some("offline"), &[], 3, 2);
// We can fix everything.
t("sha1-offline-subkeys", Some("priv"), &[], 3, 3);
}
#[test]
fn sha1_authentication_subkey() {
// User ID: SHA1
// Enc Subkey: SHA1
// Auth Subkey: SHA1
t("sha1-authentication-subkey", Some("priv"), &[], 3, 3);
}
#[test]
fn authentication_subkey() {
// An authentication subkey doesn't require a backsig. Make
// sure we don't flag a missing backsig as an error.
// User ID: SHA512
// Enc Subkey: SHA512
// Auth Subkey: SHA512
t("authentication-subkey", Some("priv"), &[], 0, 0);
}
#[test]
fn sha1_userid_sha256_subkeys() {
// The User ID is protected with a SHA-1 signature, but two
// subkeys are protected with SHA256. Make sure the subkeys
// don't get new binding signatures.
// User ID: SHA1
// Enc Subkey: SHA1
// Sig Subkey: SHA256
// Enc Subkey: SHA256
t("sha1-userid-sha256-subkeys", Some("priv"), &[], 2, 2);
}
#[test]
fn no_backsig() {
// If a key doesn't have a backsig and needs one, it won't be
// detected as an issue, because it is not valid under
// SHA1+SP. That's okay.
// User ID: SHA512
// Sig Subkey: SHA512, no backsig.
t("no-backsig", Some("priv"), &[], 0, 0);
}
#[test]
fn sha512_self_sig_sha1_revocation() {
// Under the standard policy, SHA1 revocations are considered
// bad. We assume that SP+SHA-1 is strictly more liberal than
// SP (i.e., it accepts at least everything that SP accepts).
// User ID: SHA512, SHA-1 revocation.
t("sha512-self-sig-sha1-revocation", None, &[], 0, 0);
}
#[test]
fn revoked_certificate() {
// The certificate is only valid under SP+SHA1, and the
// revocation certificate uses SHA1. There is no need to
// upgrade the certificate or the revocation certificate.
// User ID: SHA1
// Enc Subkey: SHA1
// Revocation: SHA1
t("sha1-cert-sha1-revocation", Some("priv"), &[], 0, 0);
// The certificate is only valid under SP+SHA1, and the
// revocation certificate uses SHA256. There is no need to
// upgrade the certificate or the revocation certificate.
// User ID: SHA1
// Enc Subkey: SHA1
// Revocation: SHA256
t("sha1-cert-sha256-revocation", Some("priv"), &[], 0, 0);
// The certificate is valid under SP (the signatures use
// SHA512), but there are two revocation certificates that use
// SHA1. Make sure we upgrade them.
// User ID: SHA512
// Enc Subkey: SHA512
// Revocation: SHA1
// Revocation: SHA1
t("sha512-cert-sha1-revocation", Some("priv"), &[], 2, 2);
// The certificate is valid under SP (the signatures use
// SHA256), and it is revoked using a SHA256 revocation
// certificate, which is also valid under SP. It also has a
// SHA-1 protected signing subkey. Because the certificate is
// revoked and the revocation certificate uses SHA256, we
// don't need to fix the SHA-1 signature. Make sure we don't.
// User ID: SHA256
// Enc Subkey: SHA256
// Sig Subkey: SHA1
// Revocation: SHA256
t("sha256-cert-sha256-revocation", Some("priv"), &[], 0, 0);
}
#[test]
fn expired_certificates() {
// User ID: SHA256 (expired)
// Enc Subkey: SHA256
t("sha256-expired", Some("priv"), &[], 0, 0);
// User ID: SHA1 (expired)
// Enc Subkey: SHA1
t("sha1-expired", Some("priv"), &[], 0, 0);
// User ID: SHA256 (old, expired), SHA1 (new, live)
// Enc Subkey: SHA256
t("sha256-expired-sha1-live", Some("priv"), &[], 1, 1);
}
#[test]
fn list_keys() {
Command::cargo_bin("sq-keyring-linter").unwrap()
.current_dir(&dir())
.args(&[
"--list-keys",
// 94F19D3CB5656E0BC3977C09A8AC5ACC2FB87104
"sha1-userid-pub.pgp",
// 55EF7181C288067AE189FF12F5A5CD01D8070917
"gnupg-rsa-normal-pub.pgp"
])
.assert()
// If there are issues, the exit code is 2.
.code(2)
.stdout(predicate::eq("94F19D3CB5656E0BC3977C09A8AC5ACC2FB87104\n"));
}
#[test]
fn signature() {
Command::cargo_bin("sq-keyring-linter").unwrap()
.current_dir(&dir())
.args(&[
"msg.sig",
])
.assert()
// If there are issues, the exit code is 1.
.code(1);
}
}
|