1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/// Generates a key, then signs and verifies a message.
use std::io::{self, Write};
use sequoia_openpgp as openpgp;
use crate::openpgp::cert::prelude::*;
use crate::openpgp::serialize::stream::*;
use crate::openpgp::parse::{Parse, stream::*};
use crate::openpgp::policy::Policy;
use crate::openpgp::policy::StandardPolicy as P;
const MESSAGE: &str = "дружба";
fn main() -> openpgp::Result<()> {
let p = &P::new();
// Generate a key.
let key = generate()?;
// Sign the message.
let mut signed_message = Vec::new();
sign(p, &mut signed_message, MESSAGE, &key)?;
// Verify the message.
let mut plaintext = Vec::new();
verify(p, &mut plaintext, &signed_message, &key)?;
assert_eq!(MESSAGE.as_bytes(), &plaintext[..]);
Ok(())
}
/// Generates an signing-capable key.
fn generate() -> openpgp::Result<openpgp::Cert> {
let (cert, _revocation) = CertBuilder::new()
.add_userid("someone@example.org")
.add_signing_subkey()
.generate()?;
// Save the revocation certificate somewhere.
Ok(cert)
}
/// Signs the given message.
fn sign(p: &dyn Policy, sink: &mut (dyn Write + Send + Sync),
plaintext: &str, tsk: &openpgp::Cert)
-> openpgp::Result<()> {
// Get the keypair to do the signing from the Cert.
let keypair = tsk
.keys().unencrypted_secret()
.with_policy(p, None).supported().alive().revoked(false).for_signing()
.next().unwrap().key().clone().into_keypair()?;
// Start streaming an OpenPGP message.
let message = Message::new(sink);
// We want to sign a literal data packet.
let signer = Signer::new(message, keypair)?.build()?;
// Emit a literal data packet.
let mut literal_writer = LiteralWriter::new(signer).build()?;
// Sign the data.
literal_writer.write_all(plaintext.as_bytes())?;
// Finalize the OpenPGP message to make sure that all data is
// written.
literal_writer.finalize()?;
Ok(())
}
/// Verifies the given message.
fn verify(p: &dyn Policy, sink: &mut dyn Write,
signed_message: &[u8], sender: &openpgp::Cert)
-> openpgp::Result<()> {
// Make a helper that that feeds the sender's public key to the
// verifier.
let helper = Helper {
cert: sender,
};
// Now, create a verifier with a helper using the given Certs.
let mut verifier = VerifierBuilder::from_bytes(signed_message)?
.with_policy(p, None, helper)?;
// Verify the data.
io::copy(&mut verifier, sink)?;
Ok(())
}
struct Helper<'a> {
cert: &'a openpgp::Cert,
}
impl<'a> VerificationHelper for Helper<'a> {
fn get_certs(&mut self, _ids: &[openpgp::KeyHandle])
-> openpgp::Result<Vec<openpgp::Cert>> {
// Return public keys for signature verification here.
Ok(vec![self.cert.clone()])
}
fn check(&mut self, structure: MessageStructure)
-> openpgp::Result<()> {
// In this function, we implement our signature verification
// policy.
let mut good = false;
for (i, layer) in structure.into_iter().enumerate() {
match (i, layer) {
// First, we are interested in signatures over the
// data, i.e. level 0 signatures.
(0, MessageLayer::SignatureGroup { results }) => {
// Finally, given a VerificationResult, which only says
// whether the signature checks out mathematically, we apply
// our policy.
match results.into_iter().next() {
Some(Ok(_)) =>
good = true,
Some(Err(e)) =>
return Err(openpgp::Error::from(e).into()),
None =>
return Err(anyhow::anyhow!("No signature")),
}
},
_ => return Err(anyhow::anyhow!(
"Unexpected message structure")),
}
}
if good {
Ok(()) // Good signature.
} else {
Err(anyhow::anyhow!("Signature verification failed"))
}
}
}
|