1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
//! Demonstrates how to reply to an encrypted message without having
//! everyone's certs.
//!
//! This example demonstrates how to fall back to the original
//! message's session key in order to encrypt a reply.
//!
//! Replying to an encrypted message usually requires the encryption
//! (sub)keys for every recipient. If even one key is not available,
//! it is not possible to encrypt the new session key. Rather than
//! falling back to replying unencrypted, one can reuse the original
//! message's session key that was encrypted for every recipient and
//! reuse the original PKESKs.
//!
//! Decrypts an asymmetrically-encrypted OpenPGP message using the
//! openpgp crate, Sequoia's low-level API, remembering the session
//! key and PKESK packets. It then encrypts a new message reusing
//! both the session key and PKESK packets.
//!
//! # Examples
//!
//! First, we generate two keys. Second, we encrypt a message for
//! both certs. We then decrypt the original message using Alice's
//! key and this example program, composing an encrypted reply reusing
//! the session key and PKESK packets. Finally, we decrypt the reply
//! using Bob's key.
//!
//! ```sh
//! $ sqop generate-key alice@example.org > alice.pgp
//! $ sqop generate-key bob@example.org > bob.pgp
//! $ echo Original message | sqop encrypt alice.pgp bob.pgp > original.pgp
//! $ echo Reply | cargo run -p sequoia-openpgp --example reply-encrypted -- \
//! original.pgp alice.pgp > reply.pgp
//! $ sqop decrypt --session-key-out original.sk bob.pgp < reply.pgp
//! Encrypted using AES with 256-bit key
//! - Original message:
//! Original message
//! - Reusing (AES with 256-bit key, 62F3EADC...) with 2 PKESK packets
//! Reply
//! $ cat original.sk
//! 9:62F3EADC98E1D3D34495E79264B5959391B4FABB2B2A2B7E03861F92D0B03161
//! ```
use std::sync::Arc;
use std::collections::HashMap;
use std::env;
use std::io;
use anyhow::Context;
use sequoia_openpgp as openpgp;
use openpgp::{Cert, KeyID};
use openpgp::packet::prelude::*;
use openpgp::crypto::{KeyPair, SessionKey};
use openpgp::types::SymmetricAlgorithm;
use openpgp::parse::{Parse, stream::*};
use openpgp::serialize::{Serialize, stream::*};
use openpgp::policy::Policy;
use openpgp::policy::StandardPolicy as P;
pub fn main() -> openpgp::Result<()> {
let p = &P::new();
let args: Vec<String> = env::args().collect();
if args.len() < 3 {
return Err(anyhow::anyhow!("Reply-to-all without having all certs.\n\n\
Usage: {} <encrypted-msg> <keyfile> [<keyfile>...] \
<plaintext >ciphertext\n", args[0]));
}
let encrypted_message = &args[1];
// Read the transferable secret keys from the given files.
let certs =
args[2..].iter().map(|f| {
openpgp::Cert::from_file(f)
}).collect::<openpgp::Result<Vec<_>>>()
.context("Failed to read key")?;
// Now, create a decryptor with a helper using the given Certs.
let mut decryptor =
DecryptorBuilder::from_file(encrypted_message)?
.with_policy(p, None, Helper::new(p, certs))?;
// Finally, stream the decrypted data to stderr.
eprintln!("- Original message:");
io::copy(&mut decryptor, &mut io::stderr())
.context("Decryption failed")?;
let (algo, sk, pkesks) = decryptor.into_helper().recycling_bin.unwrap();
eprintln!("- Reusing ({:?}, {}) with {} PKESK packets",
algo, openpgp::fmt::hex::encode(&sk), pkesks.len());
// Compose a writer stack corresponding to the output format and
// packet structure we want.
let mut sink = io::stdout();
// Stream an OpenPGP message.
let message = Message::new(&mut sink);
let mut message = Armorer::new(message).build()?;
// Emit the stashed PKESK packets.
for p in pkesks {
openpgp::Packet::from(p).serialize(&mut message)?;
}
// We want to encrypt a literal data packet.
let message = Encryptor::with_session_key(message, algo.expect("XXX seipdv2"), sk)?
.build().context("Failed to create encryptor")?;
let mut message = LiteralWriter::new(message).build()
.context("Failed to create literal writer")?;
// Copy stdin to our writer stack to encrypt the data.
io::copy(&mut io::stdin(), &mut message)
.context("Failed to encrypt")?;
// Finally, finalize the OpenPGP message by tearing down the
// writer stack.
message.finalize()?;
Ok(())
}
/// This helper provides secrets for the decryption, fetches public
/// keys for the signature verification and implements the
/// verification policy.
struct Helper {
keys: HashMap<KeyID, (Arc<Cert>, KeyPair)>,
recycling_bin: Option<(Option<SymmetricAlgorithm>, SessionKey, Vec<PKESK>)>,
}
impl Helper {
/// Creates a Helper for the given Certs with appropriate secrets.
fn new(p: &dyn Policy, certs: Vec<openpgp::Cert>) -> Self {
// Map (sub)KeyIDs to certs and secrets.
let mut keys = HashMap::new();
for cert in certs {
let cert = Arc::new(cert);
for ka in cert.keys().unencrypted_secret().with_policy(p, None)
.supported()
.for_storage_encryption().for_transport_encryption()
{
keys.insert(ka.key().keyid(),
(cert.clone(),
ka.key().clone().into_keypair().unwrap()));
}
}
Helper {
keys,
recycling_bin: None,
}
}
}
impl DecryptionHelper for Helper {
fn decrypt(&mut self,
pkesks: &[openpgp::packet::PKESK],
_skesks: &[openpgp::packet::SKESK],
sym_algo: Option<SymmetricAlgorithm>,
decrypt: &mut dyn FnMut(Option<SymmetricAlgorithm>, &SessionKey) -> bool)
-> openpgp::Result<Option<Cert>>
{
// Try each PKESK until we succeed.
let mut recipient = None;
let mut encryption_context = None;
for pkesk in pkesks {
if let Some((cert, pair)) = self.keys.get_mut(&KeyID::from(pkesk.recipient())) {
if pkesk.decrypt(pair, sym_algo)
.map(|(algo, session_key)| {
let success = decrypt(algo, &session_key);
if success {
// Keep a copy the algorithm, session key,
// and all PKESK packets for the reply.
encryption_context =
Some((
algo,
session_key.clone(),
pkesks.iter().cloned().collect(),
));
}
success
})
.unwrap_or(false)
{
recipient = Some(cert.as_ref().clone());
break;
}
}
}
// Store for later use.
self.recycling_bin = encryption_context;
Ok(recipient)
}
}
impl VerificationHelper for Helper {
fn get_certs(&mut self, _ids: &[openpgp::KeyHandle])
-> openpgp::Result<Vec<openpgp::Cert>> {
Ok(Vec::new()) // Feed the Certs to the verifier here.
}
fn check(&mut self, structure: MessageStructure)
-> openpgp::Result<()> {
for layer in structure.iter() {
match layer {
MessageLayer::Compression { algo } =>
eprintln!("Compressed using {}", algo),
MessageLayer::Encryption { sym_algo, aead_algo } =>
if let Some(aead_algo) = aead_algo {
eprintln!("Encrypted and protected using {}/{}",
sym_algo, aead_algo);
} else {
eprintln!("Encrypted using {}", sym_algo);
},
MessageLayer::SignatureGroup { ref results } =>
for result in results {
match result {
Ok(GoodChecksum { ka, .. }) => {
eprintln!("Good signature from {}", ka.cert());
},
Err(e) =>
eprintln!("Error: {:?}", e),
}
}
}
}
Ok(()) // Implement your verification policy here.
}
}
|