1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
//! Scans a process memory for secret leaks.
//!
//! This is the code doing the experiments and scanning itself for
//! leaks. See ../secret-leak-detector.rs for details.
use std::{
alloc::{GlobalAlloc, System, Layout},
collections::HashMap,
io::{Read, Write},
};
use sequoia_openpgp::{
crypto::{mem, mpi::ProtectedMPI, Password, SessionKey, Signer},
fmt::hex,
packet::{
key::{Key4, PrimaryRole},
PKESK,
SKESK,
},
serialize::stream::{
Message, Encryptor, LiteralWriter,
},
parse::{
stream::*,
Parse,
},
policy::StandardPolicy,
types::{
HashAlgorithm,
SymmetricAlgorithm,
},
Cert,
KeyHandle,
Result,
};
/// An allocator that leaks all allocations making it easier to spot
/// secret leaks.
struct LeakingAllocator;
unsafe impl GlobalAlloc for LeakingAllocator {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
System.alloc(layout)
}
unsafe fn dealloc(&self, _ptr: *mut u8, _layout: Layout) {
// Leaking.
}
}
#[global_allocator]
static GLOBAL: LeakingAllocator = LeakingAllocator;
/// How often to repeat a test.
const N: usize = 1;
/// The secret to use and scan for.
const NEEDLE: &[u8] = b"@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
const N0: u8 = NEEDLE[0];
/// A clean base case that does nothing.
fn clean_basecase() {
}
/// Constructs a vector carefully, without leaking the secret during
/// construction.
fn careful_to_vec<B: AsRef<[u8]>>(b: B) -> Vec<u8> {
let b = b.as_ref();
let mut r = vec![0; b.len()];
b.iter().zip(r.iter_mut()).for_each(|(f, t)| *t = *f);
r
}
/// Checks that a secret has been written.
///
/// Notably, this also prevents optimizing the secret creation away.
fn check_secret(v: &[u8]) {
assert_eq!(v.iter().cloned().map(usize::from).sum::<usize>(),
NEEDLE.len() * N0 as usize);
std::hint::black_box(v); // Avoid optimizing away.
unsafe { // Likewise.
assert_eq!(libc::memcmp(v.as_ptr() as *const _,
NEEDLE.as_ptr() as *const _,
NEEDLE.len()), 0);
}
}
/// A leaky base case that allocates a Vector.
fn leak_basecase() {
let v = NEEDLE.to_vec();
check_secret(&v);
}
/// A test case that allocates a Vector and securely overwrites it
/// using [`memsec::memzero`].
fn test_memzero() {
let mut v = careful_to_vec(NEEDLE);
check_secret(&v);
let len = v.len();
unsafe {
memsec::memzero(v.as_mut_ptr(), len);
}
}
/// A test case that allocates a Vector and securely overwrites it
/// using [`libc::memset`].
fn test_libc_memset() {
let mut v = careful_to_vec(NEEDLE);
check_secret(&v);
let len = v.len();
let p = unsafe {
libc::memset(v.as_mut_ptr() as _, 0, len)
};
std::hint::black_box(p); // Avoid optimizing the memset away.
}
/// A test case that allocates a mem::Protected and drops it.
fn test_protected() {
let v: mem::Protected = NEEDLE.into();
check_secret(&v);
let v: mem::Protected = NEEDLE.to_vec().into();
check_secret(&v);
}
/// A test case that allocates a mem::Protected and drops it.
fn test_protected_mpi() {
let v: ProtectedMPI = NEEDLE.to_vec().into_boxed_slice().into();
check_secret(v.value());
let v: ProtectedMPI = NEEDLE.to_vec().into();
check_secret(v.value());
let v: ProtectedMPI = mem::Protected::from(NEEDLE).into();
check_secret(v.value());
}
/// A test case that allocates a SessionKey and drops it.
fn test_session_key() {
let v: SessionKey = NEEDLE.into();
check_secret(&v);
let v: SessionKey = NEEDLE.to_vec().into();
check_secret(&v);
}
/// A test case that allocates a mem::Encrypted, uses it once, then
/// drops it.
fn test_encrypted() {
let m = mem::Encrypted::new(NEEDLE.into()).unwrap();
m.map(|v| check_secret(&v));
}
/// A test case that allocates a Password, uses it once, then drops
/// it.
fn test_password() {
let p = Password::from(NEEDLE);
p.map(|v| check_secret(&v));
}
/// A test case that allocates a Key4, uses it once, then
/// drops it.
fn test_ed25519() {
let k = Key4::<_, PrimaryRole>::import_secret_ed25519(NEEDLE, None)
.unwrap();
let mut kp = k.into_keypair().unwrap();
kp.sign(HashAlgorithm::SHA256, b"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa")
.unwrap();
}
/// A test case that encrypts a message using AES-256.
fn test_aes_256_encryption() {
aes_256_encryption().unwrap();
}
fn aes_256_encryption() -> Result<Vec<u8>> {
let mut sink = Vec::new();
let message = Message::new(&mut sink);
let message = Encryptor::with_session_key(
message, SymmetricAlgorithm::AES256, NEEDLE.into())?
.add_passwords(Some(Password::from(NEEDLE)))
.build()?;
let mut w = LiteralWriter::new(message).build()?;
w.write_all(b"Hello world.")?;
w.finalize()?;
Ok(sink)
}
/// A test case that decrypts a message using AES-256.
fn test_aes_256_decryption() {
let ciphertext = aes_256_encryption().unwrap();
aes_256_decryption(&ciphertext).unwrap();
}
fn aes_256_decryption(ciphertext: &[u8]) -> Result<()> {
let p = &StandardPolicy::new();
struct Helper {}
impl VerificationHelper for Helper {
fn get_certs(&mut self, _ids: &[KeyHandle]) -> Result<Vec<Cert>> {
Ok(Vec::new())
}
fn check(&mut self, _structure: MessageStructure) -> Result<()> {
Ok(())
}
}
impl DecryptionHelper for Helper {
fn decrypt(&mut self, _: &[PKESK], skesks: &[SKESK],
_sym_algo: Option<SymmetricAlgorithm>,
decrypt: &mut dyn FnMut(Option<SymmetricAlgorithm>, &SessionKey) -> bool)
-> Result<Option<Cert>>
{
skesks[0].decrypt(&Password::from(NEEDLE))
.map(|(algo, session_key)| decrypt(algo, &session_key))?;
Ok(None)
}
}
let h = Helper {};
let mut v = DecryptorBuilder::from_bytes(ciphertext)?
.with_policy(p, None, h)?;
let mut content = Vec::new();
v.read_to_end(&mut content)?;
assert_eq!(content, b"Hello world.");
Ok(())
}
type Test = fn() -> ();
fn main() {
let tests: HashMap<&'static str, Test> = [
("clean_basecase", clean_basecase as Test),
("leak_basecase", leak_basecase as Test),
("test_memzero", test_memzero as Test),
("test_libc_memset", test_libc_memset as Test),
("test_protected", test_protected as Test),
("test_protected_mpi", test_protected_mpi as Test),
("test_session_key", test_session_key as Test),
("test_encrypted", test_encrypted as Test),
("test_password", test_password as Test),
("test_ed25519", test_ed25519 as Test),
("test_aes_256_encryption", test_aes_256_encryption as Test),
("test_aes_256_decryption", test_aes_256_decryption as Test),
].into_iter().collect();
let test = if let Some(t) = std::env::args().nth(1) {
t
} else {
eprintln!("Usage: {} <TEST>\n\nAvailable tests:\n",
std::env::args().nth(0).unwrap());
for t in tests.keys() {
println!("{}", t);
}
return;
};
eprintln!("{}: running test", test);
for _ in 0..N {
if let Some(test_fn) = tests.get(test.as_str()) {
(test_fn)();
} else {
panic!("unknown test case {:?}", test);
}
}
scan(&test).unwrap();
}
fn scan(name: &str) -> Result<()> {
let mut found_secret = false;
let mut sink = std::io::stderr();
for map in Map::iter()? {
let map = map?;
if map.read && map.write {
let mut header_printed = false;
let view = map.as_bytes()?;
const CS: usize = 16;
for (i, c) in view.chunks(CS).enumerate() {
if c.iter().filter(|&b| *b == N0).count() > 7 {
found_secret = true;
if ! header_printed {
eprintln!("{}: {} bytes", map.pathname, map.len);
header_printed = true;
}
let mut d = hex::Dumper::with_offset(
&mut sink, "", map.start as usize + i * CS);
d.write_labeled(c, |_, buf| {
let mut s = String::with_capacity(16);
for b in buf {
assert!(N0 != b'!');
s.push(if *b == N0 {
'!'
} else {
'.'
});
}
Some(s)
})?;
}
}
}
}
if found_secret {
eprintln!("{}: secret leaked", name);
std::process::exit(1);
} else {
eprintln!("{}: passed", name);
Ok(())
}
}
use std::{
fs::File,
io::{BufReader, BufRead},
};
#[derive(Debug)]
#[allow(dead_code)]
struct Map {
start: u64,
len: u64,
read: bool,
write: bool,
execute: bool,
offset: u64,
device: String,
inode: u64,
pathname: String,
}
impl Map {
fn iter() -> Result<impl Iterator<Item = Result<Map>>> {
let f = File::open("/proc/self/maps")?;
let f = BufReader::new(f);
Ok(f.lines().filter_map(|l| l.ok()).map(Self::parse_line))
}
fn parse_line(l: String) -> Result<Self> {
let f = l.splitn(6, ' ').collect::<Vec<_>>();
let a = f[0].splitn(2, '-').collect::<Vec<_>>();
let parse_hex = |s| -> Result<u64> {
let b = hex::decode(s)?;
let mut a = [0; 8]; // XXX word size <= u64
let l = a.len().min(b.len());
a[8 - l..].copy_from_slice(&b[..l]);
Ok(u64::from_be_bytes(a))
};
let start = parse_hex(&a[0])?;
let end = parse_hex(&a[1])?;
assert!(start <= end);
Ok(Map {
start,
len: end - start,
read: f[1].as_bytes()[0] == b'r',
write: f[1].as_bytes()[1] == b'w',
execute: f[1].as_bytes()[2] == b'x',
offset: parse_hex(&f[2])?,
device: f[3].into(),
inode: f[4].parse()?,
pathname: f[5].trim_start().into(),
})
}
fn as_bytes(&self) -> Result<&[u8]> {
if self.read {
let s = unsafe {
std::slice::from_raw_parts(self.start as usize as *const _,
self.len as usize)
};
Ok(s)
} else {
Err(anyhow::anyhow!("No read permissions"))
}
}
}
|