File: sparse.h

package info (click to toggle)
rust-simsimd 6.5.12-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,016 kB
  • sloc: ansic: 10,568; makefile: 2
file content (1384 lines) | stat: -rw-r--r-- 70,590 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
/**
 *  @file       sparse.h
 *  @brief      SIMD-accelerated functions for Sparse Vectors.
 *  @author     Ash Vardanian
 *  @date       March 21, 2024
 *
 *  Contains:
 *  - Set Intersection ~ Jaccard Distance
 *  - Sparse Dot Products, outputting the count and weighted product
 *
 *  For datatypes:
 *  - u16: for vocabularies under 64 thousand tokens
 *  - u32: for vocabularies under 4 billion tokens
 *  - u16 indicies + i16 weights: for weighted word counts
 *  - u16 indicies + bf16 weights: for sparse matrices
 *
 *  For hardware architectures:
 *  - x86: Ice Lake, Turin
 *  - Arm: SVE2
 *
 *  Interestingly, to implement sparse distances and products, the most important function
 *  is analogous to `std::set_intersection`, that outputs the intersection of two sorted
 *  sequences. The naive implementation of that function would look like:
 *
 *      std::size_t intersection_size = 0;
 *      while (i != a_length && j != b_length) {
 *          scalar_t ai = a[i], bj = b[j];
 *          intersection_size += ai == bj;
 *          i += ai < bj;
 *          j += ai >= bj;
 *      }
 *
 *  Assuming we are dealing with sparse arrays, most of the time we are just evaluating
 *  branches and skipping entries. So what if we could skip multiple entries at a time
 *  searching for the next chunk, where an intersection is possible. For weighted arrays:
 *
 *      double product = 0;
 *      while (i != a_length && j != b_length) {
 *          scalar_t ai = a[i], bj = b[j];
 *          product += ai == bj ? a_weights[i] * b_weights[j] : 0;
 *          i += ai < bj;
 *          j += ai >= bj;
 *      }
 *
 *  x86 intrinsics: https://www.intel.com/content/www/us/en/docs/intrinsics-guide/
 *  Arm intrinsics: https://developer.arm.com/architectures/instruction-sets/intrinsics/
 */
#ifndef SIMSIMD_SPARSE_H
#define SIMSIMD_SPARSE_H

#include "types.h"

#ifdef __cplusplus
extern "C" {
#endif

/*  Implements the serial set intersection algorithm, similar to `std::set_intersection in C++ STL`,
 *  but uses clever galloping logic, if the arrays significantly differ in size.
 */
SIMSIMD_PUBLIC void simsimd_intersect_u16_serial(     //
    simsimd_u16_t const *a, simsimd_u16_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_intersect_u32_serial(     //
    simsimd_u32_t const *a, simsimd_u32_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_spdot_counts_u16_serial(                //
    simsimd_u16_t const *a, simsimd_u16_t const *b,                 //
    simsimd_i16_t const *a_weights, simsimd_i16_t const *b_weights, //
    simsimd_size_t a_length, simsimd_size_t b_length,               //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_spdot_weights_u16_serial(                 //
    simsimd_u16_t const *a, simsimd_u16_t const *b,                   //
    simsimd_bf16_t const *a_weights, simsimd_bf16_t const *b_weights, //
    simsimd_size_t a_length, simsimd_size_t b_length,                 //
    simsimd_distance_t *results);

/*  Implements the most naive set intersection algorithm, similar to `std::set_intersection in C++ STL`,
 *  naively enumerating the elements of two arrays.
 */
SIMSIMD_PUBLIC void simsimd_intersect_u16_accurate(   //
    simsimd_u16_t const *a, simsimd_u16_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_intersect_u32_accurate(   //
    simsimd_u32_t const *a, simsimd_u32_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_spdot_counts_u16_accurate(              //
    simsimd_u16_t const *a, simsimd_u16_t const *b,                 //
    simsimd_i16_t const *a_weights, simsimd_i16_t const *b_weights, //
    simsimd_size_t a_length, simsimd_size_t b_length,               //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_spdot_weights_u16_accurate(               //
    simsimd_u16_t const *a, simsimd_u16_t const *b,                   //
    simsimd_bf16_t const *a_weights, simsimd_bf16_t const *b_weights, //
    simsimd_size_t a_length, simsimd_size_t b_length,                 //
    simsimd_distance_t *results);

/*  SIMD-powered backends for Arm SVE, mostly using 32-bit arithmetic over variable-length platform-defined word sizes.
 *  Designed for Arm Graviton 3, Microsoft Cobalt, as well as Nvidia Grace and newer Ampere Altra CPUs.
 */
SIMSIMD_PUBLIC void simsimd_intersect_u16_sve2(       //
    simsimd_u16_t const *a, simsimd_u16_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_intersect_u32_sve2(       //
    simsimd_u32_t const *a, simsimd_u32_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_spdot_counts_u16_sve2(                  //
    simsimd_u16_t const *a, simsimd_u16_t const *b,                 //
    simsimd_i16_t const *a_weights, simsimd_i16_t const *b_weights, //
    simsimd_size_t a_length, simsimd_size_t b_length,               //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_spdot_weights_u16_sve2(                   //
    simsimd_u16_t const *a, simsimd_u16_t const *b,                   //
    simsimd_bf16_t const *a_weights, simsimd_bf16_t const *b_weights, //
    simsimd_size_t a_length, simsimd_size_t b_length,                 //
    simsimd_distance_t *results);

/*  SIMD-powered backends for various generations of AVX512 CPUs.
 *  Skylake is handy, as it supports masked loads and other operations, avoiding the need for the tail loop.
 *  Ice Lake, however, is needed even for the most basic kernels to perform integer matching.
 */
SIMSIMD_PUBLIC void simsimd_intersect_u16_ice(        //
    simsimd_u16_t const *a, simsimd_u16_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_intersect_u32_ice(        //
    simsimd_u32_t const *a, simsimd_u32_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results);

/*  SIMD-powered backends for AMD Turin CPUs with cheap VP2INTERSECT instructions.
 *  On the Intel side, only mobile Tiger Lake support them, but have prohibitively high latency.
 */
SIMSIMD_PUBLIC void simsimd_intersect_u16_turin(      //
    simsimd_u16_t const *a, simsimd_u16_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_intersect_u32_turin(      //
    simsimd_u32_t const *a, simsimd_u32_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_spdot_counts_u16_turin(                 //
    simsimd_u16_t const *a, simsimd_u16_t const *b,                 //
    simsimd_i16_t const *a_weights, simsimd_i16_t const *b_weights, //
    simsimd_size_t a_length, simsimd_size_t b_length,               //
    simsimd_distance_t *results);
SIMSIMD_PUBLIC void simsimd_spdot_weights_u16_turin(                  //
    simsimd_u16_t const *a, simsimd_u16_t const *b,                   //
    simsimd_bf16_t const *a_weights, simsimd_bf16_t const *b_weights, //
    simsimd_size_t a_length, simsimd_size_t b_length,                 //
    simsimd_distance_t *results);

#define SIMSIMD_MAKE_INTERSECT_LINEAR(name, input_type, counter_type)                                  \
    SIMSIMD_PUBLIC void simsimd_intersect_##input_type##_##name(                                       \
        simsimd_##input_type##_t const *a, simsimd_##input_type##_t const *b, simsimd_size_t a_length, \
        simsimd_size_t b_length, simsimd_distance_t *result) {                                         \
        simsimd_##counter_type##_t intersection_size = 0;                                              \
        simsimd_size_t i = 0, j = 0;                                                                   \
        while (i != a_length && j != b_length) {                                                       \
            simsimd_##input_type##_t ai = a[i];                                                        \
            simsimd_##input_type##_t bj = b[j];                                                        \
            intersection_size += ai == bj;                                                             \
            i += ai < bj;                                                                              \
            j += ai >= bj;                                                                             \
        }                                                                                              \
        *result = intersection_size;                                                                   \
    }

SIMSIMD_MAKE_INTERSECT_LINEAR(accurate, u16, size) // simsimd_intersect_u16_accurate
SIMSIMD_MAKE_INTERSECT_LINEAR(accurate, u32, size) // simsimd_intersect_u32_accurate

#define SIMSIMD_MAKE_INTERSECT_WEIGHTED(name, variation, input_type, counter_type, weight_type, accumulator_type, \
                                        load_and_convert)                                                         \
    SIMSIMD_PUBLIC void simsimd_##variation##_##input_type##_##name(                                              \
        simsimd_##input_type##_t const *a, simsimd_##input_type##_t const *b,                                     \
        simsimd_##weight_type##_t const *a_weights, simsimd_##weight_type##_t const *b_weights,                   \
        simsimd_size_t a_length, simsimd_size_t b_length, simsimd_distance_t *results) {                          \
        simsimd_##counter_type##_t intersection_size = 0;                                                         \
        simsimd_##accumulator_type##_t weights_product = 0;                                                       \
        simsimd_size_t i = 0, j = 0;                                                                              \
        while (i != a_length && j != b_length) {                                                                  \
            simsimd_##input_type##_t ai = a[i];                                                                   \
            simsimd_##input_type##_t bj = b[j];                                                                   \
            int matches = ai == bj;                                                                               \
            simsimd_##accumulator_type##_t awi = load_and_convert(a_weights + i);                                 \
            simsimd_##accumulator_type##_t bwi = load_and_convert(b_weights + i);                                 \
            weights_product += matches * awi * bwi;                                                               \
            intersection_size += matches;                                                                         \
            i += ai < bj;                                                                                         \
            j += ai >= bj;                                                                                        \
        }                                                                                                         \
        results[0] = intersection_size;                                                                           \
        results[1] = weights_product;                                                                             \
    }

SIMSIMD_MAKE_INTERSECT_WEIGHTED(accurate, spdot_counts, u16, size, i16, i64,
                                SIMSIMD_DEREFERENCE) // simsimd_spdot_counts_u16_accurate
SIMSIMD_MAKE_INTERSECT_WEIGHTED(accurate, spdot_weights, u16, size, bf16, f64,
                                SIMSIMD_BF16_TO_F32) // simsimd_spdot_weights_u16_accurate

#define SIMSIMD_MAKE_INTERSECT_GALLOPING(name, input_type, counter_type)                                             \
    SIMSIMD_PUBLIC simsimd_size_t simsimd_galloping_search_##input_type(simsimd_##input_type##_t const *array,       \
                                                                        simsimd_size_t start, simsimd_size_t length, \
                                                                        simsimd_##input_type##_t val) {              \
        simsimd_size_t low = start;                                                                                  \
        simsimd_size_t high = start + 1;                                                                             \
        while (high < length && array[high] < val) {                                                                 \
            low = high;                                                                                              \
            high = (2 * high < length) ? 2 * high : length;                                                          \
        }                                                                                                            \
        while (low < high) {                                                                                         \
            simsimd_size_t mid = low + (high - low) / 2;                                                             \
            if (array[mid] < val) { low = mid + 1; }                                                                 \
            else { high = mid; }                                                                                     \
        }                                                                                                            \
        return low;                                                                                                  \
    }                                                                                                                \
                                                                                                                     \
    SIMSIMD_PUBLIC void simsimd_intersect_##input_type##_##name(                                                     \
        simsimd_##input_type##_t const *shorter, simsimd_##input_type##_t const *longer,                             \
        simsimd_size_t shorter_length, simsimd_size_t longer_length, simsimd_distance_t *result) {                   \
        /* Swap arrays if necessary, as we want "longer" to be larger than "shorter" */                              \
        if (longer_length < shorter_length) {                                                                        \
            simsimd_##input_type##_t const *temp = shorter;                                                          \
            shorter = longer;                                                                                        \
            longer = temp;                                                                                           \
            simsimd_size_t temp_length = shorter_length;                                                             \
            shorter_length = longer_length;                                                                          \
            longer_length = temp_length;                                                                             \
        }                                                                                                            \
                                                                                                                     \
        /* Use the accurate implementation if galloping is not beneficial */                                         \
        if (longer_length < 64 * shorter_length) {                                                                   \
            simsimd_intersect_##input_type##_accurate(shorter, longer, shorter_length, longer_length, result);       \
            return;                                                                                                  \
        }                                                                                                            \
                                                                                                                     \
        /* Perform galloping, shrinking the target range */                                                          \
        simsimd_##counter_type##_t intersection_size = 0;                                                            \
        simsimd_size_t j = 0;                                                                                        \
        for (simsimd_size_t i = 0; i < shorter_length; ++i) {                                                        \
            simsimd_##input_type##_t shorter_i = shorter[i];                                                         \
            j = simsimd_galloping_search_##input_type(longer, j, longer_length, shorter_i);                          \
            if (j < longer_length && longer[j] == shorter_i) { intersection_size++; }                                \
        }                                                                                                            \
        *result = intersection_size;                                                                                 \
    }

SIMSIMD_MAKE_INTERSECT_GALLOPING(serial, u16, size) // simsimd_intersect_u16_serial
SIMSIMD_MAKE_INTERSECT_GALLOPING(serial, u32, size) // simsimd_intersect_u32_serial
SIMSIMD_MAKE_INTERSECT_WEIGHTED(serial, spdot_counts, u16, size, i16, i32,
                                SIMSIMD_DEREFERENCE) // simsimd_spdot_counts_u16_serial
SIMSIMD_MAKE_INTERSECT_WEIGHTED(serial, spdot_weights, u16, size, bf16, f32,
                                SIMSIMD_BF16_TO_F32) // simsimd_spdot_weights_u16_serial

/*  The AVX-512 implementations are inspired by the "Faster-Than-Native Alternatives
 *  for x86 VP2INTERSECT Instructions" paper by Guille Diez-Canas, 2022.
 *
 *      https://github.com/mozonaut/vp2intersect
 *      https://arxiv.org/pdf/2112.06342.pdf
 *
 *  For R&D purposes, it's important to keep the following latencies in mind:
 *
 *   - `_mm512_permutex_epi64` - needs F - 3 cycles latency
 *   - `_mm512_shuffle_epi8` - needs BW - 1 cycle latency
 *   - `_mm512_permutexvar_epi16` - needs BW - 4-6 cycles latency
 *   - `_mm512_permutexvar_epi8` - needs VBMI - 3 cycles latency
 */
#if _SIMSIMD_TARGET_X86
#if SIMSIMD_TARGET_ICE
#pragma GCC push_options
#pragma GCC target("avx2", "avx512f", "avx512vl", "bmi2", "lzcnt", "popcnt", "avx512bw", "avx512vbmi2")
#pragma clang attribute push(__attribute__((target("avx2,avx512f,avx512vl,bmi2,lzcnt,popcnt,avx512bw,avx512vbmi2"))), \
                             apply_to = function)

/**
 *  @brief  Analogous to `_mm512_2intersect_epi16_mask`, but compatible with Ice Lake CPUs,
 *          slightly faster than the native Tiger Lake implementation, but returns only one mask.
 */
SIMSIMD_INTERNAL simsimd_u32_t _simsimd_intersect_u16x32_ice(__m512i a, __m512i b) {
    __m512i a1 = _mm512_alignr_epi32(a, a, 4);
    __m512i a2 = _mm512_alignr_epi32(a, a, 8);
    __m512i a3 = _mm512_alignr_epi32(a, a, 12);

    __m512i b1 = _mm512_shuffle_epi32(b, _MM_PERM_ADCB);
    __m512i b2 = _mm512_shuffle_epi32(b, _MM_PERM_BADC);
    __m512i b3 = _mm512_shuffle_epi32(b, _MM_PERM_CBAD);

    __m512i b01 = _mm512_shrdi_epi32(b, b, 16);
    __m512i b11 = _mm512_shrdi_epi32(b1, b1, 16);
    __m512i b21 = _mm512_shrdi_epi32(b2, b2, 16);
    __m512i b31 = _mm512_shrdi_epi32(b3, b3, 16);

    __mmask32 nm00 = _mm512_cmpneq_epi16_mask(a, b);
    __mmask32 nm01 = _mm512_cmpneq_epi16_mask(a1, b);
    __mmask32 nm02 = _mm512_cmpneq_epi16_mask(a2, b);
    __mmask32 nm03 = _mm512_cmpneq_epi16_mask(a3, b);

    __mmask32 nm10 = _mm512_mask_cmpneq_epi16_mask(nm00, a, b01);
    __mmask32 nm11 = _mm512_mask_cmpneq_epi16_mask(nm01, a1, b01);
    __mmask32 nm12 = _mm512_mask_cmpneq_epi16_mask(nm02, a2, b01);
    __mmask32 nm13 = _mm512_mask_cmpneq_epi16_mask(nm03, a3, b01);

    __mmask32 nm20 = _mm512_mask_cmpneq_epi16_mask(nm10, a, b1);
    __mmask32 nm21 = _mm512_mask_cmpneq_epi16_mask(nm11, a1, b1);
    __mmask32 nm22 = _mm512_mask_cmpneq_epi16_mask(nm12, a2, b1);
    __mmask32 nm23 = _mm512_mask_cmpneq_epi16_mask(nm13, a3, b1);

    __mmask32 nm30 = _mm512_mask_cmpneq_epi16_mask(nm20, a, b11);
    __mmask32 nm31 = _mm512_mask_cmpneq_epi16_mask(nm21, a1, b11);
    __mmask32 nm32 = _mm512_mask_cmpneq_epi16_mask(nm22, a2, b11);
    __mmask32 nm33 = _mm512_mask_cmpneq_epi16_mask(nm23, a3, b11);

    __mmask32 nm40 = _mm512_mask_cmpneq_epi16_mask(nm30, a, b2);
    __mmask32 nm41 = _mm512_mask_cmpneq_epi16_mask(nm31, a1, b2);
    __mmask32 nm42 = _mm512_mask_cmpneq_epi16_mask(nm32, a2, b2);
    __mmask32 nm43 = _mm512_mask_cmpneq_epi16_mask(nm33, a3, b2);

    __mmask32 nm50 = _mm512_mask_cmpneq_epi16_mask(nm40, a, b21);
    __mmask32 nm51 = _mm512_mask_cmpneq_epi16_mask(nm41, a1, b21);
    __mmask32 nm52 = _mm512_mask_cmpneq_epi16_mask(nm42, a2, b21);
    __mmask32 nm53 = _mm512_mask_cmpneq_epi16_mask(nm43, a3, b21);

    __mmask32 nm60 = _mm512_mask_cmpneq_epi16_mask(nm50, a, b3);
    __mmask32 nm61 = _mm512_mask_cmpneq_epi16_mask(nm51, a1, b3);
    __mmask32 nm62 = _mm512_mask_cmpneq_epi16_mask(nm52, a2, b3);
    __mmask32 nm63 = _mm512_mask_cmpneq_epi16_mask(nm53, a3, b3);

    __mmask32 nm70 = _mm512_mask_cmpneq_epi16_mask(nm60, a, b31);
    __mmask32 nm71 = _mm512_mask_cmpneq_epi16_mask(nm61, a1, b31);
    __mmask32 nm72 = _mm512_mask_cmpneq_epi16_mask(nm62, a2, b31);
    __mmask32 nm73 = _mm512_mask_cmpneq_epi16_mask(nm63, a3, b31);

    return ~(simsimd_u32_t)(nm70 & simsimd_u32_rol(nm71, 8) & simsimd_u32_rol(nm72, 16) & simsimd_u32_ror(nm73, 8));
}

/**
 *  @brief  Analogous to `_mm512_2intersect_epi32`, but compatible with Ice Lake CPUs,
 *          slightly faster than the native Tiger Lake implementation, but returns only one mask.
 *
 *  Some latencies to keep in mind:
 *
 *  - `_mm512_shuffle_epi32` - "VPSHUFD (ZMM, ZMM, I8)":
 *      - 1 cycle latency on Ice Lake: 1*p5
 *      - 1 cycle latency on Genoa: 1*FP123
 *  - `_mm512_mask_cmpneq_epi32_mask` - "VPCMPD (K, ZMM, ZMM, I8)":
 *      - 3 cycle latency on Ice Lake: 1*p5
 *      - 1 cycle latency on Genoa: 1*FP01
 *  - `_mm512_alignr_epi32` - "VPALIGNR (ZMM, ZMM, ZMM, I8)":
 *      - 1 cycle latency on Ice Lake: 1*p5
 *      - 2 cycle latency on Genoa: 1*FP12
 *  - `_mm512_conflict_epi32` - "VPCONFLICTD (ZMM, ZMM)":
 *      - up to 26 cycles latency on Ice Lake: 11*p0+9*p05+17*p5
 *      - up to 7 cycle latency on Genoa: 1*FP01+1*FP12
 */
SIMSIMD_INTERNAL simsimd_u16_t _simsimd_intersect_u32x16_ice(__m512i a, __m512i b) {
    __m512i a1 = _mm512_alignr_epi32(a, a, 4);
    __m512i b1 = _mm512_shuffle_epi32(b, _MM_PERM_ADCB);
    __mmask16 nm00 = _mm512_cmpneq_epi32_mask(a, b);

    __m512i a2 = _mm512_alignr_epi32(a, a, 8);
    __m512i a3 = _mm512_alignr_epi32(a, a, 12);
    __mmask16 nm01 = _mm512_cmpneq_epi32_mask(a1, b);
    __mmask16 nm02 = _mm512_cmpneq_epi32_mask(a2, b);

    __mmask16 nm03 = _mm512_cmpneq_epi32_mask(a3, b);
    __mmask16 nm10 = _mm512_mask_cmpneq_epi32_mask(nm00, a, b1);
    __mmask16 nm11 = _mm512_mask_cmpneq_epi32_mask(nm01, a1, b1);

    __m512i b2 = _mm512_shuffle_epi32(b, _MM_PERM_BADC);
    __mmask16 nm12 = _mm512_mask_cmpneq_epi32_mask(nm02, a2, b1);
    __mmask16 nm13 = _mm512_mask_cmpneq_epi32_mask(nm03, a3, b1);
    __mmask16 nm20 = _mm512_mask_cmpneq_epi32_mask(nm10, a, b2);

    __m512i b3 = _mm512_shuffle_epi32(b, _MM_PERM_CBAD);
    __mmask16 nm21 = _mm512_mask_cmpneq_epi32_mask(nm11, a1, b2);
    __mmask16 nm22 = _mm512_mask_cmpneq_epi32_mask(nm12, a2, b2);
    __mmask16 nm23 = _mm512_mask_cmpneq_epi32_mask(nm13, a3, b2);

    __mmask16 nm0 = _mm512_mask_cmpneq_epi32_mask(nm20, a, b3);
    __mmask16 nm1 = _mm512_mask_cmpneq_epi32_mask(nm21, a1, b3);
    __mmask16 nm2 = _mm512_mask_cmpneq_epi32_mask(nm22, a2, b3);
    __mmask16 nm3 = _mm512_mask_cmpneq_epi32_mask(nm23, a3, b3);

    return ~(simsimd_u16_t)(nm0 & simsimd_u16_rol(nm1, 4) & simsimd_u16_rol(nm2, 8) & simsimd_u16_ror(nm3, 4));
}

SIMSIMD_PUBLIC void simsimd_intersect_u16_ice(        //
    simsimd_u16_t const *a, simsimd_u16_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results) {

    // The baseline implementation for very small arrays (2 registers or less) can be quite simple:
    if (a_length < 64 && b_length < 64) {
        simsimd_intersect_u16_serial(a, b, a_length, b_length, results);
        return;
    }

    simsimd_u16_t const *const a_end = a + a_length;
    simsimd_u16_t const *const b_end = b + b_length;
    simsimd_size_t c = 0;
    union vec_t {
        __m512i zmm;
        simsimd_u16_t u16[32];
        simsimd_u8_t u8[64];
    } a_vec, b_vec;

    while (a + 32 <= a_end && b + 32 <= b_end) {
        a_vec.zmm = _mm512_loadu_si512((__m512i const *)a);
        b_vec.zmm = _mm512_loadu_si512((__m512i const *)b);

        // Intersecting registers with `_simsimd_intersect_u16x32_ice` involves a lot of shuffling
        // and comparisons, so we want to avoid it if the slices don't overlap at all..
        simsimd_u16_t a_min;
        simsimd_u16_t a_max = a_vec.u16[31];
        simsimd_u16_t b_min = b_vec.u16[0];
        simsimd_u16_t b_max = b_vec.u16[31];

        // If the slices don't overlap, advance the appropriate pointer
        while (a_max < b_min && a + 64 <= a_end) {
            a += 32;
            a_vec.zmm = _mm512_loadu_si512((__m512i const *)a);
            a_max = a_vec.u16[31];
        }
        a_min = a_vec.u16[0];
        while (b_max < a_min && b + 64 <= b_end) {
            b += 32;
            b_vec.zmm = _mm512_loadu_si512((__m512i const *)b);
            b_max = b_vec.u16[31];
        }
        b_min = b_vec.u16[0];

        __m512i a_last_broadcasted = _mm512_set1_epi16(*(short const *)&a_max);
        __m512i b_last_broadcasted = _mm512_set1_epi16(*(short const *)&b_max);
        __mmask32 a_step_mask = _mm512_cmple_epu16_mask(a_vec.zmm, b_last_broadcasted);
        __mmask32 b_step_mask = _mm512_cmple_epu16_mask(b_vec.zmm, a_last_broadcasted);
        a += 32 - _lzcnt_u32((simsimd_u32_t)a_step_mask);
        b += 32 - _lzcnt_u32((simsimd_u32_t)b_step_mask);

        // Now we are likely to have some overlap, so we can intersect the registers
        __mmask32 a_matches = _simsimd_intersect_u16x32_ice(a_vec.zmm, b_vec.zmm);

        // The paper also contained a very nice procedure for exporting the matches,
        // but we don't need it here:
        //      _mm512_mask_compressstoreu_epi16(c, a_matches, a_vec);
        c += _mm_popcnt_u32(a_matches); // MSVC has no `_popcnt32`
    }

    simsimd_intersect_u16_serial(a, b, a_end - a, b_end - b, results);
    *results += c;
}

SIMSIMD_PUBLIC void simsimd_intersect_u32_ice(        //
    simsimd_u32_t const *a, simsimd_u32_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results) {

    // The baseline implementation for very small arrays (2 registers or less) can be quite simple:
    if (a_length < 32 && b_length < 32) {
        simsimd_intersect_u32_serial(a, b, a_length, b_length, results);
        return;
    }

    simsimd_u32_t const *const a_end = a + a_length;
    simsimd_u32_t const *const b_end = b + b_length;
    simsimd_size_t c = 0;
    union vec_t {
        __m512i zmm;
        simsimd_u32_t u32[16];
        simsimd_u8_t u8[64];
    } a_vec, b_vec;

    while (a + 16 <= a_end && b + 16 <= b_end) {
        a_vec.zmm = _mm512_loadu_si512((__m512i const *)a);
        b_vec.zmm = _mm512_loadu_si512((__m512i const *)b);

        // Intersecting registers with `_simsimd_intersect_u32x16_ice` involves a lot of shuffling
        // and comparisons, so we want to avoid it if the slices don't overlap at all..
        simsimd_u32_t a_min;
        simsimd_u32_t a_max = a_vec.u32[15];
        simsimd_u32_t b_min = b_vec.u32[0];
        simsimd_u32_t b_max = b_vec.u32[15];

        // If the slices don't overlap, advance the appropriate pointer
        while (a_max < b_min && a + 32 <= a_end) {
            a += 16;
            a_vec.zmm = _mm512_loadu_si512((__m512i const *)a);
            a_max = a_vec.u32[15];
        }
        a_min = a_vec.u32[0];
        while (b_max < a_min && b + 32 <= b_end) {
            b += 16;
            b_vec.zmm = _mm512_loadu_si512((__m512i const *)b);
            b_max = b_vec.u32[15];
        }
        b_min = b_vec.u32[0];

        __m512i a_last_broadcasted = _mm512_set1_epi32(*(int const *)&a_max);
        __m512i b_last_broadcasted = _mm512_set1_epi32(*(int const *)&b_max);
        __mmask16 a_step_mask = _mm512_cmple_epu32_mask(a_vec.zmm, b_last_broadcasted);
        __mmask16 b_step_mask = _mm512_cmple_epu32_mask(b_vec.zmm, a_last_broadcasted);
        a += 32 - _lzcnt_u32((simsimd_u32_t)a_step_mask);
        b += 32 - _lzcnt_u32((simsimd_u32_t)b_step_mask);

        // Now we are likely to have some overlap, so we can intersect the registers
        __mmask16 a_matches = _simsimd_intersect_u32x16_ice(a_vec.zmm, b_vec.zmm);

        // The paper also contained a very nice procedure for exporting the matches,
        // but we don't need it here:
        //      _mm512_mask_compressstoreu_epi32(c, a_matches, a_vec);
        c += _mm_popcnt_u32(a_matches); // MSVC has no `_popcnt32`
    }

    simsimd_intersect_u32_serial(a, b, a_end - a, b_end - b, results);
    *results += c;
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_ICE

#if SIMSIMD_TARGET_TURIN
#pragma GCC push_options
#pragma GCC target("avx2", "avx512f", "avx512vl", "bmi", "bmi2", "lzcnt", "popcnt", "avx512bw", "avx512vbmi2", \
                   "avx512bf16", "avx512vnni", "avx512vp2intersect", "avx512dq")
#pragma clang attribute push(                                                                                                    \
    __attribute__((target(                                                                                                       \
        "avx2,avx512f,avx512vl,bmi,bmi2,lzcnt,popcnt,avx512bw,avx512vbmi2,avx512bf16,avx512vnni,avx512vp2intersect,avx512dq"))), \
    apply_to = function)

SIMSIMD_PUBLIC void simsimd_intersect_u16_turin(      //
    simsimd_u16_t const *a, simsimd_u16_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results) {

    //! There is no such thing as `_mm512_2intersect_epi16`, only the 32-bit variant!
    //! So instead of jumping through 32 entries at a time, like on Ice Lake, we will
    //! step through 16 entries at a time.
    simsimd_u16_t const *const a_end = a + a_length;
    simsimd_u16_t const *const b_end = b + b_length;
    simsimd_size_t c = 0;
    union vec_t {
        __m256i ymm;
        simsimd_u16_t u16[16];
        simsimd_u8_t u8[32];
    } a_vec, b_vec;

    // Broadcast index for last element (hoisted outside loop)
    __m256i const last_idx = _mm256_set1_epi16(15);
    while (a + 16 <= a_end && b + 16 <= b_end) {
        a_vec.ymm = _mm256_lddqu_si256((__m256i const *)a);
        b_vec.ymm = _mm256_lddqu_si256((__m256i const *)b);

        // Intersect the registers
        __m512i a_i32_vec = _mm512_cvtepu16_epi32(a_vec.ymm);
        __m512i b_i32_vec = _mm512_cvtepu16_epi32(b_vec.ymm);
        __mmask16 a_matches_any_in_b, b_matches_any_in_a;
        _mm512_2intersect_epi32(a_i32_vec, b_i32_vec, &a_matches_any_in_b, &b_matches_any_in_a);

        // The paper also contained a very nice procedure for exporting the matches,
        // but we don't need it here:
        //      _mm512_mask_compressstoreu_epi16(c, a_matches_any_in_b, a_vec);
        c += _mm_popcnt_u32(a_matches_any_in_b); // MSVC has no `_popcnt32`

        __m256i a_last_broadcasted = _mm256_permutexvar_epi16(last_idx, a_vec.ymm);
        __m256i b_last_broadcasted = _mm256_permutexvar_epi16(last_idx, b_vec.ymm);
        __mmask16 a_step_mask = _mm256_cmple_epu16_mask(a_vec.ymm, b_last_broadcasted);
        __mmask16 b_step_mask = _mm256_cmple_epu16_mask(b_vec.ymm, a_last_broadcasted);
        a += _tzcnt_u32(~(simsimd_u32_t)a_step_mask | 0x10000);
        b += _tzcnt_u32(~(simsimd_u32_t)b_step_mask | 0x10000);
    }

    simsimd_intersect_u16_serial(a, b, a_end - a, b_end - b, results);
    *results += c;
}

SIMSIMD_PUBLIC void simsimd_intersect_u32_turin(      //
    simsimd_u32_t const *a, simsimd_u32_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results) {

    simsimd_u32_t const *const a_end = a + a_length;
    simsimd_u32_t const *const b_end = b + b_length;
    simsimd_size_t c = 0;
    union vec_t {
        __m512i zmm;
        simsimd_u32_t u32[16];
        simsimd_u8_t u8[64];
    } a_vec, b_vec;

    // Broadcast index for last element (hoisted outside loop)
    __m512i const last_idx = _mm512_set1_epi32(15);
    while (a + 16 <= a_end && b + 16 <= b_end) {
        a_vec.zmm = _mm512_loadu_si512((__m512i const *)a);
        b_vec.zmm = _mm512_loadu_si512((__m512i const *)b);

        // Intersect the registers
        __mmask16 a_matches_any_in_b, b_matches_any_in_a;
        _mm512_2intersect_epi32(a_vec.zmm, b_vec.zmm, &a_matches_any_in_b, &b_matches_any_in_a);

        // The paper also contained a very nice procedure for exporting the matches,
        // but we don't need it here:
        //      _mm512_mask_compressstoreu_epi32(c, a_matches_any_in_b, a_vec);
        c += _mm_popcnt_u32(a_matches_any_in_b); // MSVC has no `_popcnt32`

        // Pure SIMD broadcasts - no scalar extraction needed
        __m512i a_last_broadcasted = _mm512_permutexvar_epi32(last_idx, a_vec.zmm);
        __m512i b_last_broadcasted = _mm512_permutexvar_epi32(last_idx, b_vec.zmm);
        __mmask16 a_step_mask = _mm512_cmple_epu32_mask(a_vec.zmm, b_last_broadcasted);
        __mmask16 b_step_mask = _mm512_cmple_epu32_mask(b_vec.zmm, a_last_broadcasted);
        a += _tzcnt_u32(~(simsimd_u32_t)a_step_mask | 0x10000);
        b += _tzcnt_u32(~(simsimd_u32_t)b_step_mask | 0x10000);
    }

    simsimd_intersect_u32_serial(a, b, a_end - a, b_end - b, results);
    *results += c;
}

SIMSIMD_PUBLIC void simsimd_spdot_weights_u16_turin(                  //
    simsimd_u16_t const *a, simsimd_u16_t const *b,                   //
    simsimd_bf16_t const *a_weights, simsimd_bf16_t const *b_weights, //
    simsimd_size_t a_length, simsimd_size_t b_length,                 //
    simsimd_distance_t *results) {

    // The baseline implementation for very small arrays (2 registers or less) can be quite simple:
    if (a_length < 64 && b_length < 64) {
        simsimd_spdot_weights_u16_serial(a, b, a_weights, b_weights, a_length, b_length, results);
        return;
    }

    //! There is no such thing as `_mm512_2intersect_epi16`, only the 32-bit variant!
    //! So instead of jumping through 32 entries at a time, like on Ice Lake, we will
    //! step through 16 entries at a time.
    simsimd_u16_t const *const a_end = a + a_length;
    simsimd_u16_t const *const b_end = b + b_length;
    simsimd_size_t intersection_size = 0;
    union vec_t {
        __m256i ymm;
        __m256 ymmps;
        simsimd_u16_t u16[16];
        simsimd_u8_t u8[32];
    } a_vec, b_vec, product_vec;
    product_vec.ymmps = _mm256_setzero_ps();

    // Broadcast index for last element (hoisted outside loop)
    __m256i const last_idx = _mm256_set1_epi16(15);
    while (a + 16 <= a_end && b + 16 <= b_end) {
        a_vec.ymm = _mm256_lddqu_si256((__m256i const *)a);
        b_vec.ymm = _mm256_lddqu_si256((__m256i const *)b);

        // Intersecting registers with `_mm512_2intersect_epi16_mask` involves a lot of shuffling
        // and comparisons, so we want to avoid it if the slices don't overlap at all..
        simsimd_u16_t a_min;
        simsimd_u16_t a_max = a_vec.u16[15];
        simsimd_u16_t b_min = b_vec.u16[0];
        simsimd_u16_t b_max = b_vec.u16[15];

        // If the slices don't overlap, advance the appropriate pointer
        while (a_max < b_min && a + 32 <= a_end) {
            a += 16, a_weights += 16;
            a_vec.ymm = _mm256_lddqu_si256((__m256i const *)a);
            a_max = a_vec.u16[15];
        }
        a_min = a_vec.u16[0];
        while (b_max < a_min && b + 32 <= b_end) {
            b += 16, b_weights += 16;
            b_vec.ymm = _mm256_lddqu_si256((__m256i const *)b);
            b_max = b_vec.u16[15];
        }
        b_min = b_vec.u16[0];

        // Now we are likely to have some overlap, so we can intersect the registers
        __m512i a_i32_vec = _mm512_cvtepu16_epi32(a_vec.ymm);
        __m512i b_i32_vec = _mm512_cvtepu16_epi32(b_vec.ymm);
        __mmask16 a_matches_any_in_b, b_matches_any_in_a;
        _mm512_2intersect_epi32(a_i32_vec, b_i32_vec, &a_matches_any_in_b, &b_matches_any_in_a);

        // The paper also contained a very nice procedure for exporting the matches,
        // but we don't need it here:
        //      _mm512_mask_compressstoreu_epi16(intersection_size, a_matches_any_in_b, a_vec);
        int a_matches_count_in_b = _mm_popcnt_u32(a_matches_any_in_b); // MSVC has no `_popcnt32`
        intersection_size += a_matches_count_in_b;

        // Load and shift all the relevant weights to the start of the vector before doing the dot product
        if (a_matches_count_in_b) {
            __m256i a_weights_vec = _mm256_lddqu_si256((__m256i const *)a_weights);
            a_weights_vec = _mm256_maskz_compress_epi16(a_matches_any_in_b, a_weights_vec);
            __m256i b_weights_vec = _mm256_lddqu_si256((__m256i const *)b_weights);
            b_weights_vec = _mm256_maskz_compress_epi16(b_matches_any_in_a, b_weights_vec);
            product_vec.ymmps = _mm256_dpbf16_ps(product_vec.ymmps, (__m256bh)a_weights_vec, (__m256bh)b_weights_vec);
        }

        __m256i a_last_broadcasted = _mm256_permutexvar_epi16(last_idx, a_vec.ymm);
        __m256i b_last_broadcasted = _mm256_permutexvar_epi16(last_idx, b_vec.ymm);
        __mmask16 a_step_mask = _mm256_cmple_epu16_mask(a_vec.ymm, b_last_broadcasted);
        __mmask16 b_step_mask = _mm256_cmple_epu16_mask(b_vec.ymm, a_last_broadcasted);
        simsimd_size_t a_step = _tzcnt_u32(~(simsimd_u32_t)a_step_mask | 0x10000);
        simsimd_size_t b_step = _tzcnt_u32(~(simsimd_u32_t)b_step_mask | 0x10000);
        a += a_step, a_weights += a_step;
        b += b_step, b_weights += b_step;
    }
    simsimd_spdot_weights_u16_serial(a, b, a_weights, b_weights, a_end - a, b_end - b, results);
    results[0] += intersection_size;
    results[1] += _mm512_reduce_add_ps(_mm512_insertf32x8(_mm512_setzero_ps(), product_vec.ymmps, 0));
}

SIMSIMD_PUBLIC void simsimd_spdot_counts_u16_turin(                 //
    simsimd_u16_t const *a, simsimd_u16_t const *b,                 //
    simsimd_i16_t const *a_weights, simsimd_i16_t const *b_weights, //
    simsimd_size_t a_length, simsimd_size_t b_length,               //
    simsimd_distance_t *results) {

    // The baseline implementation for very small arrays (2 registers or less) can be quite simple:
    if (a_length < 64 && b_length < 64) {
        simsimd_spdot_counts_u16_serial(a, b, a_weights, b_weights, a_length, b_length, results);
        return;
    }

    //! There is no such thing as `_mm512_2intersect_epi16`, only the 32-bit variant!
    //! So instead of jumping through 32 entries at a time, like on Ice Lake, we will
    //! step through 16 entries at a time.
    simsimd_u16_t const *const a_end = a + a_length;
    simsimd_u16_t const *const b_end = b + b_length;
    simsimd_size_t intersection_size = 0;
    union vec_t {
        __m256i ymm;
        simsimd_u16_t u16[16];
        simsimd_u8_t u8[32];
    } a_vec, b_vec, product_vec;
    product_vec.ymm = _mm256_setzero_si256();

    // Broadcast index for last element (hoisted outside loop)
    __m256i const last_idx = _mm256_set1_epi16(15);
    while (a + 16 <= a_end && b + 16 <= b_end) {
        a_vec.ymm = _mm256_lddqu_si256((__m256i const *)a);
        b_vec.ymm = _mm256_lddqu_si256((__m256i const *)b);

        // Intersecting registers with `_mm512_2intersect_epi16_mask` involves a lot of shuffling
        // and comparisons, so we want to avoid it if the slices don't overlap at all..
        simsimd_u16_t a_min;
        simsimd_u16_t a_max = a_vec.u16[15];
        simsimd_u16_t b_min = b_vec.u16[0];
        simsimd_u16_t b_max = b_vec.u16[15];

        // If the slices don't overlap, advance the appropriate pointer
        while (a_max < b_min && a + 32 <= a_end) {
            a += 16, a_weights += 16;
            a_vec.ymm = _mm256_lddqu_si256((__m256i const *)a);
            a_max = a_vec.u16[15];
        }
        a_min = a_vec.u16[0];
        while (b_max < a_min && b + 32 <= b_end) {
            b += 16, b_weights += 16;
            b_vec.ymm = _mm256_lddqu_si256((__m256i const *)b);
            b_max = b_vec.u16[15];
        }
        b_min = b_vec.u16[0];

        // Now we are likely to have some overlap, so we can intersect the registers
        __m512i a_i32_vec = _mm512_cvtepu16_epi32(a_vec.ymm);
        __m512i b_i32_vec = _mm512_cvtepu16_epi32(b_vec.ymm);
        __mmask16 a_matches_any_in_b, b_matches_any_in_a;
        _mm512_2intersect_epi32(a_i32_vec, b_i32_vec, &a_matches_any_in_b, &b_matches_any_in_a);

        // The paper also contained a very nice procedure for exporting the matches,
        // but we don't need it here:
        //      _mm512_mask_compressstoreu_epi16(intersection_size, a_matches_any_in_b, a_vec);
        int a_matches_count_in_b = _mm_popcnt_u32(a_matches_any_in_b); // MSVC has no `_popcnt32`
        intersection_size += a_matches_count_in_b;

        // Load and shift all the relevant weights to the start of the vector before doing the dot product
        if (a_matches_count_in_b) {
            __m256i a_weights_vec = _mm256_lddqu_si256((__m256i const *)a_weights);
            a_weights_vec = _mm256_maskz_compress_epi16(a_matches_any_in_b, a_weights_vec);
            __m256i b_weights_vec = _mm256_lddqu_si256((__m256i const *)b_weights);
            b_weights_vec = _mm256_maskz_compress_epi16(b_matches_any_in_a, b_weights_vec);
            product_vec.ymm = _mm256_dpwssds_epi32(product_vec.ymm, a_weights_vec, b_weights_vec);
        }

        __m256i a_last_broadcasted = _mm256_permutexvar_epi16(last_idx, a_vec.ymm);
        __m256i b_last_broadcasted = _mm256_permutexvar_epi16(last_idx, b_vec.ymm);
        __mmask16 a_step_mask = _mm256_cmple_epu16_mask(a_vec.ymm, b_last_broadcasted);
        __mmask16 b_step_mask = _mm256_cmple_epu16_mask(b_vec.ymm, a_last_broadcasted);
        simsimd_size_t a_step = _tzcnt_u32(~(simsimd_u32_t)a_step_mask | 0x10000);
        simsimd_size_t b_step = _tzcnt_u32(~(simsimd_u32_t)b_step_mask | 0x10000);
        a += a_step, a_weights += a_step;
        b += b_step, b_weights += b_step;
    }

    simsimd_spdot_counts_u16_serial(a, b, a_weights, b_weights, a_end - a, b_end - b, results);
    results[0] += intersection_size;
    results[1] += _mm512_reduce_add_epi32(_mm512_inserti64x4(_mm512_setzero_si512(), product_vec.ymm, 0));
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_TURIN
#endif // _SIMSIMD_TARGET_X86

#if _SIMSIMD_TARGET_ARM
#if SIMSIMD_TARGET_NEON
#pragma GCC push_options
#pragma GCC target("arch=armv8-a")
#pragma clang attribute push(__attribute__((target("arch=armv8-a"))), apply_to = function)

/**
 *  @brief  Uses `vshrn` to produce a bitmask, similar to `movemask` in SSE.
 *  https://community.arm.com/arm-community-blogs/b/infrastructure-solutions-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon
 */
SIMSIMD_INTERNAL simsimd_u64_t _simsimd_u8_to_u4_neon(uint8x16_t vec) {
    return vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(vreinterpretq_u16_u8(vec), 4)), 0);
}

SIMSIMD_INTERNAL int _simsimd_clz_u64(simsimd_u64_t x) {
// On GCC and Clang use the builtin, otherwise use the generic implementation
#if defined(__GNUC__) || defined(__clang__)
    return __builtin_clzll(x);
#else
    int n = 0;
    while ((x & 0x8000000000000000ull) == 0) n++, x <<= 1;
    return n;
#endif
}

SIMSIMD_INTERNAL uint32x4_t _simsimd_intersect_u32x4_neon(uint32x4_t a, uint32x4_t b) {
    uint32x4_t b1 = vextq_u32(b, b, 1);
    uint32x4_t b2 = vextq_u32(b, b, 2);
    uint32x4_t b3 = vextq_u32(b, b, 3);
    uint32x4_t nm00 = vceqq_u32(a, b);
    uint32x4_t nm01 = vceqq_u32(a, b1);
    uint32x4_t nm02 = vceqq_u32(a, b2);
    uint32x4_t nm03 = vceqq_u32(a, b3);
    uint32x4_t nm = vorrq_u32(vorrq_u32(nm00, nm01), vorrq_u32(nm02, nm03));
    return nm;
}

SIMSIMD_INTERNAL uint16x8_t _simsimd_intersect_u16x8_neon(uint16x8_t a, uint16x8_t b) {
    uint16x8_t b1 = vextq_u16(b, b, 1);
    uint16x8_t b2 = vextq_u16(b, b, 2);
    uint16x8_t b3 = vextq_u16(b, b, 3);
    uint16x8_t b4 = vextq_u16(b, b, 4);
    uint16x8_t b5 = vextq_u16(b, b, 5);
    uint16x8_t b6 = vextq_u16(b, b, 6);
    uint16x8_t b7 = vextq_u16(b, b, 7);
    uint16x8_t nm00 = vceqq_u16(a, b);
    uint16x8_t nm01 = vceqq_u16(a, b1);
    uint16x8_t nm02 = vceqq_u16(a, b2);
    uint16x8_t nm03 = vceqq_u16(a, b3);
    uint16x8_t nm04 = vceqq_u16(a, b4);
    uint16x8_t nm05 = vceqq_u16(a, b5);
    uint16x8_t nm06 = vceqq_u16(a, b6);
    uint16x8_t nm07 = vceqq_u16(a, b7);
    uint16x8_t nm = vorrq_u16(vorrq_u16(vorrq_u16(nm00, nm01), vorrq_u16(nm02, nm03)),
                              vorrq_u16(vorrq_u16(nm04, nm05), vorrq_u16(nm06, nm07)));
    return nm;
}

SIMSIMD_PUBLIC void simsimd_intersect_u16_neon(       //
    simsimd_u16_t const *a, simsimd_u16_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results) {

    // The baseline implementation for very small arrays (2 registers or less) can be quite simple:
    if (a_length < 32 && b_length < 32) {
        simsimd_intersect_u16_serial(a, b, a_length, b_length, results);
        return;
    }

    simsimd_u16_t const *const a_end = a + a_length;
    simsimd_u16_t const *const b_end = b + b_length;
    union vec_t {
        uint16x8_t u16x8;
        simsimd_u16_t u16[8];
        simsimd_u8_t u8[16];
    } a_vec, b_vec, c_counts_vec;
    c_counts_vec.u16x8 = vdupq_n_u16(0);

    while (a + 8 <= a_end && b + 8 <= b_end) {
        a_vec.u16x8 = vld1q_u16(a);
        b_vec.u16x8 = vld1q_u16(b);

        // Intersecting registers with `_simsimd_intersect_u16x8_neon` involves a lot of shuffling
        // and comparisons, so we want to avoid it if the slices don't overlap at all..
        simsimd_u16_t a_min;
        simsimd_u16_t a_max = a_vec.u16[7];
        simsimd_u16_t b_min = b_vec.u16[0];
        simsimd_u16_t b_max = b_vec.u16[7];

        // If the slices don't overlap, advance the appropriate pointer
        while (a_max < b_min && a + 16 <= a_end) {
            a += 8;
            a_vec.u16x8 = vld1q_u16(a);
            a_max = a_vec.u16[7];
        }
        a_min = a_vec.u16[0];
        while (b_max < a_min && b + 16 <= b_end) {
            b += 8;
            b_vec.u16x8 = vld1q_u16(b);
            b_max = b_vec.u16[7];
        }
        b_min = b_vec.u16[0];

        // Now we are likely to have some overlap, so we can intersect the registers.
        // We can do it by performing a population count at every cycle, but it's not the cheapest in terms of cycles.
        //
        //      simsimd_u64_t a_matches = __builtin_popcountll(
        //          _simsimd_u8_to_u4_neon(vreinterpretq_u8_u16(
        //              _simsimd_intersect_u16x8_neon(a_vec.u16x8, b_vec.u16x8))));
        //      c += a_matches / 8;
        //
        // Alternatively, we can we can transform match-masks into "ones", accumulate them between the cycles,
        // and merge all together in the end.
        uint16x8_t a_matches = _simsimd_intersect_u16x8_neon(a_vec.u16x8, b_vec.u16x8);
        c_counts_vec.u16x8 = vaddq_u16(c_counts_vec.u16x8, vandq_u16(a_matches, vdupq_n_u16(1)));

        // Counting leading zeros is tricky. On Arm we can use inline Assembly to get the result,
        // but MSVC doesn't support that:
        //
        //      SIMSIMD_INTERNAL int _simsimd_clz_u64(simsimd_u64_t value) {
        //          simsimd_u64_t result;
        //          __asm__("clz %x0, %x1" : "=r"(result) : "r"(value));
        //          return (int)result;
        //      }
        //
        // Alternatively, we can use the `vclz_u32` NEON intrinsic.
        // It will compute the leading zeros number for both `a_step` and `b_step` in parallel.
        uint16x8_t a_last_broadcasted = vdupq_n_u16(a_max);
        uint16x8_t b_last_broadcasted = vdupq_n_u16(b_max);
        simsimd_u64_t a_step = _simsimd_clz_u64(_simsimd_u8_to_u4_neon( //
            vreinterpretq_u8_u16(vcleq_u16(a_vec.u16x8, b_last_broadcasted))));
        simsimd_u64_t b_step = _simsimd_clz_u64(_simsimd_u8_to_u4_neon( //
            vreinterpretq_u8_u16(vcleq_u16(b_vec.u16x8, a_last_broadcasted))));
        a += (64 - a_step) / 8;
        b += (64 - b_step) / 8;
    }

    simsimd_intersect_u16_serial(a, b, a_end - a, b_end - b, results);
    *results += vaddvq_u16(c_counts_vec.u16x8);
}

SIMSIMD_PUBLIC void simsimd_intersect_u32_neon(       //
    simsimd_u32_t const *a, simsimd_u32_t const *b,   //
    simsimd_size_t a_length, simsimd_size_t b_length, //
    simsimd_distance_t *results) {

    // The baseline implementation for very small arrays (2 registers or less) can be quite simple:
    if (a_length < 32 && b_length < 32) {
        simsimd_intersect_u32_serial(a, b, a_length, b_length, results);
        return;
    }

    simsimd_u32_t const *const a_end = a + a_length;
    simsimd_u32_t const *const b_end = b + b_length;
    union vec_t {
        uint32x4_t u32x4;
        simsimd_u32_t u32[4];
        simsimd_u8_t u8[16];
    } a_vec, b_vec, c_counts_vec;
    c_counts_vec.u32x4 = vdupq_n_u32(0);

    while (a + 4 <= a_end && b + 4 <= b_end) {
        a_vec.u32x4 = vld1q_u32(a);
        b_vec.u32x4 = vld1q_u32(b);

        // Intersecting registers with `_simsimd_intersect_u32x4_neon` involves a lot of shuffling
        // and comparisons, so we want to avoid it if the slices don't overlap at all..
        simsimd_u32_t a_min;
        simsimd_u32_t a_max = a_vec.u32[3];
        simsimd_u32_t b_min = b_vec.u32[0];
        simsimd_u32_t b_max = b_vec.u32[3];

        // If the slices don't overlap, advance the appropriate pointer
        while (a_max < b_min && a + 8 <= a_end) {
            a += 4;
            a_vec.u32x4 = vld1q_u32(a);
            a_max = a_vec.u32[3];
        }
        a_min = a_vec.u32[0];
        while (b_max < a_min && b + 8 <= b_end) {
            b += 4;
            b_vec.u32x4 = vld1q_u32(b);
            b_max = b_vec.u32[3];
        }
        b_min = b_vec.u32[0];

        // Now we are likely to have some overlap, so we can intersect the registers
        // We can do it by performing a population count at every cycle, but it's not the cheapest in terms of cycles.
        //
        //     simsimd_u64_t a_matches = __builtin_popcountll(
        //         _simsimd_u8_to_u4_neon(vreinterpretq_u8_u32(
        //             _simsimd_intersect_u32x4_neon(a_vec.u32x4, b_vec.u32x4))));
        //     c += a_matches / 16;
        //
        // Alternatively, we can we can transform match-masks into "ones", accumulate them between the cycles,
        // and merge all together in the end.
        uint32x4_t a_matches = _simsimd_intersect_u32x4_neon(a_vec.u32x4, b_vec.u32x4);
        c_counts_vec.u32x4 = vaddq_u32(c_counts_vec.u32x4, vandq_u32(a_matches, vdupq_n_u32(1)));

        uint32x4_t a_last_broadcasted = vdupq_n_u32(a_max);
        uint32x4_t b_last_broadcasted = vdupq_n_u32(b_max);
        simsimd_u64_t a_step = _simsimd_clz_u64(_simsimd_u8_to_u4_neon( //
            vreinterpretq_u8_u32(vcleq_u32(a_vec.u32x4, b_last_broadcasted))));
        simsimd_u64_t b_step = _simsimd_clz_u64(_simsimd_u8_to_u4_neon( //
            vreinterpretq_u8_u32(vcleq_u32(b_vec.u32x4, a_last_broadcasted))));
        a += (64 - a_step) / 16;
        b += (64 - b_step) / 16;
    }

    simsimd_intersect_u32_serial(a, b, a_end - a, b_end - b, results);
    *results += vaddvq_u32(c_counts_vec.u32x4);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_NEON

/*  SVE2 introduces many new integer-oriented instructions, extending some of the NEON functionality
 *  to variable-length SVE registers. Those include "compare multiple" intrinsics:
 *
 *  - `svmatch[_u16]` that matches each scalar in first vector against all members of a 128-bit lane in the second.
 *  - `svhistcnt[_s32]_z` does something similar, performing an inclusive prefix scan.
 *  - `svtbx[_u16]` does extended table lookup
 *
 *  Other notable instructions:
 *
 *  - `DUP`: Broadcast indexed predicate element
 *    https://developer.arm.com/documentation/ddi0602/2021-06/SVE-Instructions/DUP--predicate---Broadcast-indexed-predicate-element-?lang=en
 *  - `SCLAMP` and `UCLAMP`: clamp values, i.e. combined min+max
 *    https://developer.arm.com/documentation/ddi0602/2021-06/SVE-Instructions/SCLAMP--Signed-clamp-to-minimum-maximum-vector-?lang=en
 *    https://developer.arm.com/documentation/ddi0602/2021-06/SVE-Instructions/UCLAMP--Unsigned-clamp-to-minimum-maximum-vector-?lang=en
 *  - `TBLQ`: Table lookup quadword
 *    https://developer.arm.com/documentation/ddi0602/2022-12/SVE-Instructions/TBLQ--Programmable-table-lookup-within-each-quadword-vector-segment--zeroing--?lang=en
 *
 *  Great resources for SVE2 intrinsics:
 *
 *  > ARM’s Scalable Vector Extensions: A Critical Look at SVE2 For Integer Workloads
 *    https://gist.github.com/zingaburga/805669eb891c820bd220418ee3f0d6bd
 */
#if SIMSIMD_TARGET_SVE2
#pragma GCC push_options
#pragma GCC target("arch=armv8.2-a+sve+sve2")
#pragma clang attribute push(__attribute__((target("arch=armv8.2-a+sve+sve2"))), apply_to = function)

SIMSIMD_PUBLIC void simsimd_intersect_u16_sve2(     //
    simsimd_u16_t const *a, simsimd_u16_t const *b, //
    simsimd_size_t a_length,
    simsimd_size_t b_length, //
    simsimd_distance_t *results) {

    // A single SVE lane is 128 bits wide, so one lane fits 8 values.
    simsimd_size_t const register_size = svcnth();
    simsimd_size_t const lanes_count = register_size / 8;
    simsimd_size_t a_idx = 0, b_idx = 0;
    simsimd_size_t c = 0;

    while (a_idx < a_length && b_idx < b_length) {
        // Load `a_member` and broadcast it, load `b_members_vec` from memory
        svbool_t a_progress = svwhilelt_b16_u64(a_idx, a_length);
        svbool_t b_progress = svwhilelt_b16_u64(b_idx, b_length);
        svuint16_t a_vec = svld1_u16(a_progress, a + a_idx);
        svuint16_t b_vec = svld1_u16(b_progress, b + b_idx);

        // Intersecting registers with `svmatch_u16` involves a lot of shuffling
        // and comparisons, so we want to avoid it if the slices don't overlap at all..
        simsimd_u16_t a_min;
        simsimd_u16_t a_max = svlastb(a_progress, a_vec);
        simsimd_u16_t b_min = svlasta(svpfalse_b(), b_vec);
        simsimd_u16_t b_max = svlastb(b_progress, b_vec);

        // If the slices don't overlap, advance the appropriate pointer
        while (a_max < b_min && (a_idx + register_size) <= a_length) {
            a_idx += register_size;
            a_progress = svwhilelt_b16_u64(a_idx, a_length);
            a_vec = svld1_u16(a_progress, a + a_idx);
            a_max = svlastb(a_progress, a_vec);
        }
        a_min = svlasta(svpfalse_b(), a_vec);
        while (b_max < a_min && (b_idx + register_size) <= b_length) {
            b_idx += register_size;
            b_progress = svwhilelt_b16_u64(b_idx, b_length);
            b_vec = svld1_u16(b_progress, b + b_idx);
            b_max = svlastb(b_progress, b_vec);
        }
        b_min = svlasta(svpfalse_b(), b_vec);

        // Before we evaluate the intersection size, obfurscating the order in `b_vec`,
        // let's estimate how much we will need to advance the pointers afterwards.
        // For that, we don't even need to broadcast the values in SVE, as the whole
        // register can be compared against a scalar:
        //
        //      svuint16_t a_last_broadcasted =  svdup_n_u16(a_max);
        //      svuint16_t b_last_broadcasted =  svdup_n_u16(b_max);
        svbool_t a_mask = svcmple_n_u16(a_progress, a_vec, b_max);
        svbool_t b_mask = svcmple_n_u16(b_progress, b_vec, a_max);
        simsimd_u64_t a_step = svcntp_b16(a_progress, a_mask);
        simsimd_u64_t b_step = svcntp_b16(b_progress, b_mask);

        // Compare `a_vec` with each lane of `b_vec`
        svbool_t equal_mask = svmatch_u16(a_progress, a_vec, b_vec);
        for (simsimd_size_t i = 1; i < lanes_count; i++) {
            b_vec = svext_u16(b_vec, b_vec, 8);
            equal_mask = svorr_z(svptrue_b16(), equal_mask, svmatch_u16(a_progress, a_vec, b_vec));
        }
        simsimd_size_t equal_count = svcntp_b16(svptrue_b16(), equal_mask);

        // Advance
        a_idx += a_step;
        b_idx += b_step;
        c += equal_count;
    }
    *results = c;
}

SIMSIMD_PUBLIC void simsimd_intersect_u32_sve2(simsimd_u32_t const *a, simsimd_u32_t const *b, simsimd_size_t a_length,
                                               simsimd_size_t b_length, simsimd_distance_t *results) {

    // A single SVE lane is 128 bits wide, so one lane fits 4 values.
    simsimd_size_t const register_size = svcntw();
    simsimd_size_t const lanes_count = register_size / 4;
    simsimd_size_t a_idx = 0, b_idx = 0;
    simsimd_size_t c = 0;

    while (a_idx < a_length && b_idx < b_length) {
        // Load `a_member` and broadcast it, load `b_members_vec` from memory
        svbool_t a_progress = svwhilelt_b32_u64(a_idx, a_length);
        svbool_t b_progress = svwhilelt_b32_u64(b_idx, b_length);
        svuint32_t a_vec = svld1_u32(a_progress, a + a_idx);
        svuint32_t b_vec = svld1_u32(b_progress, b + b_idx);

        // Intersecting registers with `svmatch_u16` involves a lot of shuffling
        // and comparisons, so we want to avoid it if the slices don't overlap at all..
        simsimd_u32_t a_min;
        simsimd_u32_t a_max = svlastb(a_progress, a_vec);
        simsimd_u32_t b_min = svlasta(svpfalse_b(), b_vec);
        simsimd_u32_t b_max = svlastb(b_progress, b_vec);

        // If the slices don't overlap, advance the appropriate pointer
        while (a_max < b_min && (a_idx + register_size) <= a_length) {
            a_idx += register_size;
            a_progress = svwhilelt_b32_u64(a_idx, a_length);
            a_vec = svld1_u32(a_progress, a + a_idx);
            a_max = svlastb(a_progress, a_vec);
        }
        a_min = svlasta(svpfalse_b(), a_vec);
        while (b_max < a_min && (b_idx + register_size) <= b_length) {
            b_idx += register_size;
            b_progress = svwhilelt_b32_u64(b_idx, b_length);
            b_vec = svld1_u32(b_progress, b + b_idx);
            b_max = svlastb(b_progress, b_vec);
        }
        b_min = svlasta(svpfalse_b(), b_vec);

        // Before we evaluate the intersection size, obfurscating the order in `b_vec`,
        // let's estimate how much we will need to advance the pointers afterwards.
        // For that, we don't even need to broadcast the values in SVE, as the whole
        // register can be compared against a scalar:
        //
        //      svuint32_t a_last_broadcasted =  svdup_n_u32(a_max);
        //      svuint32_t b_last_broadcasted =  svdup_n_u32(b_max);
        svbool_t a_mask = svcmple_n_u32(a_progress, a_vec, b_max);
        svbool_t b_mask = svcmple_n_u32(b_progress, b_vec, a_max);
        simsimd_u64_t a_step = svcntp_b32(a_progress, a_mask);
        simsimd_u64_t b_step = svcntp_b32(b_progress, b_mask);

        // Comparing `a_vec` with each lane of `b_vec` can't be done with `svmatch`,
        // the same way as in `simsimd_intersect_u16_sve2`, as that instruction is only
        // available for 8-bit and 16-bit integers.
        //
        //      svbool_t equal_mask = svpfalse_b();
        //      for (simsimd_size_t i = 0; i < register_size; i++) {
        //          equal_mask = svorr_z(svptrue_b32(), equal_mask, svcmpeq_u32(a_progress, a_vec, b_vec));
        //          b_vec = svext_u32(b_vec, b_vec, 1);
        //      }
        //      simsimd_size_t equal_count = svcntp_b32(a_progress, equal_mask);
        //
        // Alternatively, one can use histogram instructions, like `svhistcnt_u32_z`.
        // They practically compute the prefix-matching count, which is equivalent to
        // the lower triangle of the row-major intersection matrix.
        // To compute the upper triangle, we can reverse (with `svrev_b32`) the order of
        // elements and repeat the operation, accumulating the results for top and bottom.
        // Let's look at 4x element registers as an example:
        //
        //      ⊐ α = {A, B, C, D}, β = {X, Y, Z, W}:
        //
        //      hist(α, β):           hist(α_rev, β_rev):
        //
        //        X Y Z W               W Z Y X
        //      A 1 0 0 0             D 1 0 0 0
        //      B 1 1 0 0             C 1 1 0 0
        //      C 1 1 1 0             B 1 1 1 0
        //      D 1 1 1 1             A 1 1 1 1
        //
        svuint32_t hist_lower = svhistcnt_u32_z(a_progress, a_vec, b_vec);
        svuint32_t a_rev_vec = svrev_u32(a_vec);
        svuint32_t b_rev_vec = svrev_u32(b_vec);
        svuint32_t hist_upper = svrev_u32(svhistcnt_u32_z(svptrue_b32(), a_rev_vec, b_rev_vec));
        svuint32_t hist = svorr_u32_x(a_progress, hist_lower, hist_upper);
        svbool_t equal_mask = svcmpne_n_u32(a_progress, hist, 0);
        simsimd_size_t equal_count = svcntp_b32(a_progress, equal_mask);

        // Advance
        a_idx += a_step;
        b_idx += b_step;
        c += equal_count;
    }
    *results = c;
}

SIMSIMD_PUBLIC void simsimd_spdot_counts_u16_sve2(                  //
    simsimd_u16_t const *a, simsimd_u16_t const *b,                 //
    simsimd_i16_t const *a_weights, simsimd_i16_t const *b_weights, //
    simsimd_size_t a_length, simsimd_size_t b_length,               //
    simsimd_distance_t *results) {

    // A single SVE lane is 128 bits wide, so one lane fits 8 values.
    simsimd_size_t const register_size = svcnth();
    simsimd_size_t const lanes_count = register_size / 8;
    simsimd_size_t a_idx = 0, b_idx = 0;
    svint64_t product_vec = svdupq_n_s64(0, 0);
    simsimd_size_t intersection_size = 0;

    while (a_idx < a_length && b_idx < b_length) {
        // Load `a_member` and broadcast it, load `b_members_vec` from memory
        svbool_t a_progress = svwhilelt_b16_u64(a_idx, a_length);
        svbool_t b_progress = svwhilelt_b16_u64(b_idx, b_length);
        svuint16_t a_vec = svld1_u16(a_progress, a + a_idx);
        svuint16_t b_vec = svld1_u16(b_progress, b + b_idx);

        // Intersecting registers with `svmatch_u16` involves a lot of shuffling
        // and comparisons, so we want to avoid it if the slices don't overlap at all..
        simsimd_u16_t a_min;
        simsimd_u16_t a_max = svlastb(a_progress, a_vec);
        simsimd_u16_t b_min = svlasta(svpfalse_b(), b_vec);
        simsimd_u16_t b_max = svlastb(b_progress, b_vec);

        // If the slices don't overlap, advance the appropriate pointer
        while (a_max < b_min && (a_idx + register_size) <= a_length) {
            a_idx += register_size;
            a_progress = svwhilelt_b16_u64(a_idx, a_length);
            a_vec = svld1_u16(a_progress, a + a_idx);
            a_max = svlastb(a_progress, a_vec);
        }
        a_min = svlasta(svpfalse_b(), a_vec);
        while (b_max < a_min && (b_idx + register_size) <= b_length) {
            b_idx += register_size;
            b_progress = svwhilelt_b16_u64(b_idx, b_length);
            b_vec = svld1_u16(b_progress, b + b_idx);
            b_max = svlastb(b_progress, b_vec);
        }
        b_min = svlasta(svpfalse_b(), b_vec);

        // Before we evaluate the intersection size, obfurscating the order in `b_vec`,
        // let's estimate how much we will need to advance the pointers afterwards.
        // For that, we don't even need to broadcast the values in SVE, as the whole
        // register can be compared against a scalar:
        //
        //      svuint16_t a_last_broadcasted =  svdup_n_u16(a_max);
        //      svuint16_t b_last_broadcasted =  svdup_n_u16(b_max);
        svbool_t a_mask = svcmple_n_u16(a_progress, a_vec, b_max);
        svbool_t b_mask = svcmple_n_u16(b_progress, b_vec, a_max);
        simsimd_u64_t a_step = svcntp_b16(a_progress, a_mask);
        simsimd_u64_t b_step = svcntp_b16(b_progress, b_mask);

        // Compare `a_vec` with each lane of `b_vec`
        svint16_t a_weights_vec = svld1_s16(a_progress, a_weights + a_idx);
        svint16_t b_weights_vec = svld1_s16(b_progress, b_weights + b_idx);
        for (simsimd_size_t i = 0; i < lanes_count; i++) {
            svbool_t equal_mask = svmatch_u16(a_progress, a_vec, b_vec);
            svint16_t b_equal_weights_vec = svsel_s16(equal_mask, b_weights_vec, svdup_n_s16(0.f));
            product_vec = svdot_s64(product_vec, a_weights_vec, b_equal_weights_vec);
            b_vec = svext_u16(b_vec, b_vec, 8);
            intersection_size += svcntp_b16(svptrue_b16(), equal_mask);
        }

        // Advance
        a_idx += a_step;
        b_idx += b_step;
    }
    results[0] = (simsimd_distance_t)intersection_size;
    results[1] = svaddv_s64(svptrue_b64(), product_vec);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_SVE2

#if SIMSIMD_TARGET_SVE2 && SIMSIMD_TARGET_SVE_BF16
#pragma GCC push_options
#pragma GCC target("arch=armv8.6-a+sve+sve2+bf16")
#pragma clang attribute push(__attribute__((target("arch=armv8.6-a+sve+sve2+bf16"))), apply_to = function)

SIMSIMD_PUBLIC void simsimd_spdot_weights_u16_sve2(                   //
    simsimd_u16_t const *a, simsimd_u16_t const *b,                   //
    simsimd_bf16_t const *a_weights, simsimd_bf16_t const *b_weights, //
    simsimd_size_t a_length, simsimd_size_t b_length,                 //
    simsimd_distance_t *results) {

    // A single SVE lane is 128 bits wide, so one lane fits 8 values.
    simsimd_size_t const register_size = svcnth();
    simsimd_size_t const lanes_count = register_size / 8;
    simsimd_size_t a_idx = 0, b_idx = 0;
    svfloat32_t product_vec = svdupq_n_f32(0.f, 0.f, 0.f, 0.f);
    simsimd_size_t intersection_size = 0;

    while (a_idx < a_length && b_idx < b_length) {
        // Load `a_member` and broadcast it, load `b_members_vec` from memory
        svbool_t a_progress = svwhilelt_b16_u64(a_idx, a_length);
        svbool_t b_progress = svwhilelt_b16_u64(b_idx, b_length);
        svuint16_t a_vec = svld1_u16(a_progress, a + a_idx);
        svuint16_t b_vec = svld1_u16(b_progress, b + b_idx);

        // Intersecting registers with `svmatch_u16` involves a lot of shuffling
        // and comparisons, so we want to avoid it if the slices don't overlap at all..
        simsimd_u16_t a_min;
        simsimd_u16_t a_max = svlastb(a_progress, a_vec);
        simsimd_u16_t b_min = svlasta(svpfalse_b(), b_vec);
        simsimd_u16_t b_max = svlastb(b_progress, b_vec);

        // If the slices don't overlap, advance the appropriate pointer
        while (a_max < b_min && (a_idx + register_size) <= a_length) {
            a_idx += register_size;
            a_progress = svwhilelt_b16_u64(a_idx, a_length);
            a_vec = svld1_u16(a_progress, a + a_idx);
            a_max = svlastb(a_progress, a_vec);
        }
        a_min = svlasta(svpfalse_b(), a_vec);
        while (b_max < a_min && (b_idx + register_size) <= b_length) {
            b_idx += register_size;
            b_progress = svwhilelt_b16_u64(b_idx, b_length);
            b_vec = svld1_u16(b_progress, b + b_idx);
            b_max = svlastb(b_progress, b_vec);
        }
        b_min = svlasta(svpfalse_b(), b_vec);

        // Before we evaluate the intersection size, obfurscating the order in `b_vec`,
        // let's estimate how much we will need to advance the pointers afterwards.
        // For that, we don't even need to broadcast the values in SVE, as the whole
        // register can be compared against a scalar:
        //
        //      svuint16_t a_last_broadcasted =  svdup_n_u16(a_max);
        //      svuint16_t b_last_broadcasted =  svdup_n_u16(b_max);
        svbool_t a_mask = svcmple_n_u16(a_progress, a_vec, b_max);
        svbool_t b_mask = svcmple_n_u16(b_progress, b_vec, a_max);
        simsimd_u64_t a_step = svcntp_b16(a_progress, a_mask);
        simsimd_u64_t b_step = svcntp_b16(b_progress, b_mask);

        // Compare `a_vec` with each lane of `b_vec`
        svbfloat16_t a_weights_vec = svld1_bf16(a_progress, (__bf16 const *)a_weights + a_idx);
        svbfloat16_t b_weights_vec = svld1_bf16(b_progress, (__bf16 const *)b_weights + b_idx);
        for (simsimd_size_t i = 0; i < lanes_count; i++) {
            svbool_t equal_mask = svmatch_u16(a_progress, a_vec, b_vec);
            //! The `svsel_bf16` intrinsic is broken in many compilers, not returning the correct type.
            //! So we reinterprete floats as integers and apply `svsel_s16`, but the `svreinterpret_s16_bs16`
            //! and `svreinterpret_bf16_s16` are not always properly defined!
            svint16_t b_equal_weights_vec =
                svsel_s16(equal_mask, svreinterpret_s16_bf16(b_weights_vec), svdup_n_s16(0));
            product_vec = svbfdot_f32(product_vec, a_weights_vec, svreinterpret_bf16_s16(b_equal_weights_vec));
            b_vec = svext_u16(b_vec, b_vec, 8);
            intersection_size += svcntp_b16(svptrue_b16(), equal_mask);
        }

        // Advance
        a_idx += a_step;
        b_idx += b_step;
    }
    results[0] = (simsimd_distance_t)intersection_size;
    results[1] = svaddv_f32(svptrue_b32(), product_vec);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_SVE2 && SIMSIMD_TARGET_SVE_BF16
#endif // _SIMSIMD_TARGET_ARM

#ifdef __cplusplus
}
#endif

#endif