File: spatial.h

package info (click to toggle)
rust-simsimd 6.5.12-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,016 kB
  • sloc: ansic: 10,568; makefile: 2
file content (2335 lines) | stat: -rw-r--r-- 121,807 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
/**
 *  @file       spatial.h
 *  @brief      SIMD-accelerated Spatial Similarity Measures.
 *  @author     Ash Vardanian
 *  @date       March 14, 2023
 *
 *  Contains:
 *  - L2 (Euclidean) regular and squared distance
 *  - Cosine (Angular) distance - @b not similarity!
 *
 *  For datatypes:
 *  - 64-bit IEEE floating point numbers
 *  - 32-bit IEEE floating point numbers
 *  - 16-bit IEEE floating point numbers
 *  - 16-bit brain floating point numbers
 *  - 8-bit unsigned integral numbers
 *  - 8-bit signed integral numbers
 *  - 4-bit signed integral numbers
 *
 *  For hardware architectures:
 *  - Arm: NEON, SVE
 *  - x86: Haswell, Skylake, Ice Lake, Genoa, Sapphire
 *
 *  x86 intrinsics: https://www.intel.com/content/www/us/en/docs/intrinsics-guide/
 *  Arm intrinsics: https://developer.arm.com/architectures/instruction-sets/intrinsics/
 */
#ifndef SIMSIMD_SPATIAL_H
#define SIMSIMD_SPATIAL_H

#include "types.h"

#include "dot.h" // `_simsimd_reduce_f32x8_haswell`

#ifdef __cplusplus
extern "C" {
#endif

// clang-format off

/*  Serial backends for all numeric types.
 *  By default they use 32-bit arithmetic, unless the arguments themselves contain 64-bit floats.
 *  For double-precision computation check out the "*_accurate" variants of those "*_serial" functions.
 */
SIMSIMD_PUBLIC void simsimd_l2_f64_serial(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f64_serial(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f64_serial(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_f32_serial(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f32_serial(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f32_serial(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_f16_serial(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f16_serial(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f16_serial(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_bf16_serial(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_bf16_serial(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_bf16_serial(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_i8_serial(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_i8_serial(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_i8_serial(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_u8_serial(simsimd_u8_t const* a, simsimd_u8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_u8_serial(simsimd_u8_t const* a, simsimd_u8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_u8_serial(simsimd_u8_t const* a, simsimd_u8_t const* b, simsimd_size_t n, simsimd_distance_t* result);

/*  Double-precision serial backends for all numeric types.
 *  For single-precision computation check out the "*_serial" counterparts of those "*_accurate" functions.
 */
SIMSIMD_PUBLIC void simsimd_l2_f32_accurate(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f32_accurate(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f32_accurate(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_f16_accurate(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f16_accurate(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f16_accurate(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_bf16_accurate(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_bf16_accurate(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);

/*  SIMD-powered backends for Arm NEON, mostly using 32-bit arithmetic over 128-bit words.
 *  By far the most portable backend, covering most Arm v8 devices, over a billion phones, and almost all
 *  server CPUs produced before 2023.
 */
SIMSIMD_PUBLIC void simsimd_l2_f64_neon(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f64_neon(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f64_neon(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_f32_neon(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f32_neon(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f32_neon(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_f16_neon(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f16_neon(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f16_neon(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_bf16_neon(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_bf16_neon(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_bf16_neon(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_i8_neon(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_i8_neon(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_i8_neon(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_u8_neon(simsimd_u8_t const* a, simsimd_u8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_u8_neon(simsimd_u8_t const* a, simsimd_u8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_u8_neon(simsimd_u8_t const* a, simsimd_u8_t const* b, simsimd_size_t n, simsimd_distance_t* result);

/*  SIMD-powered backends for Arm SVE, mostly using 32-bit arithmetic over variable-length platform-defined word sizes.
 *  Designed for Arm Graviton 3, Microsoft Cobalt, as well as Nvidia Grace and newer Ampere Altra CPUs.
 */
SIMSIMD_PUBLIC void simsimd_l2_f32_sve(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f32_sve(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f32_sve(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_f16_sve(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f16_sve(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f16_sve(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_bf16_sve(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_bf16_sve(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_bf16_sve(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_f64_sve(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f64_sve(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f64_sve(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);

/*  SIMD-powered backends for AVX2 CPUs of Haswell generation and newer, using 32-bit arithmetic over 256-bit words.
 *  First demonstrated in 2011, at least one Haswell-based processor was still being sold in 2022 — the Pentium G3420.
 *  Practically all modern x86 CPUs support AVX2, FMA, and F16C, making it a perfect baseline for SIMD algorithms.
 *  On other hand, there is no need to implement AVX2 versions of `f32` and `f64` functions, as those are
 *  properly vectorized by recent compilers.
 */
SIMSIMD_PUBLIC void simsimd_l2_i8_haswell(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_i8_haswell(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_i8_haswell(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_u8_haswell(simsimd_u8_t const* a, simsimd_u8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_u8_haswell(simsimd_u8_t const* a, simsimd_u8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_u8_haswell(simsimd_u8_t const* a, simsimd_u8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_f16_haswell(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f16_haswell(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f16_haswell(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_bf16_haswell(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_bf16_haswell(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_bf16_haswell(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_f32_haswell(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f32_haswell(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f32_haswell(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_f64_haswell(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f64_haswell(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f64_haswell(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);

/*  SIMD-powered backends for AVX512 CPUs of Skylake generation and newer, using 32-bit arithmetic over 512-bit words.
 *  Skylake was launched in 2015, and discontinued in 2019. Skylake had support for F, CD, VL, DQ, and BW extensions,
 *  as well as masked operations. This is enough to supersede auto-vectorization on `f32` and `f64` types.
 * 
 *  Sadly, we can't effectively interleave different kinds of arithmetic instructions to utilize more ports:
 * 
 *  > Like Intel server architectures since Skylake-X, SPR cores feature two 512-bit FMA units, and organize them in a similar fashion. 
 *  > One 512-bit FMA unit is created by fusing two 256-bit ones on port 0 and port 1. The other is added to port 5, as a server-specific 
 *  > core extension. The FMA units on port 0 and 1 are configured into 2×256-bit or 1×512-bit mode depending on whether 512-bit FMA 
 *  > instructions are present in the scheduler. That means a mix of 256-bit and 512-bit FMA instructions will not achieve higher IPC 
 *  > than executing 512-bit instructions alone.
 * 
 *  Source: https://chipsandcheese.com/p/a-peek-at-sapphire-rapids
 */
SIMSIMD_PUBLIC void simsimd_l2_f32_skylake(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f32_skylake(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f32_skylake(simsimd_f32_t const* a, simsimd_f32_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_f64_skylake(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f64_skylake(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f64_skylake(simsimd_f64_t const* a, simsimd_f64_t const* b, simsimd_size_t n, simsimd_distance_t* result);

/*  SIMD-powered backends for AVX512 CPUs of Ice Lake generation and newer, using mixed arithmetic over 512-bit words.
 *  Ice Lake added VNNI, VPOPCNTDQ, IFMA, VBMI, VAES, GFNI, VBMI2, BITALG, VPCLMULQDQ, and other extensions for integral operations.
 *  Sapphire Rapids added tiled matrix operations, but we are most interested in the new mixed-precision FMA instructions.
 */
SIMSIMD_PUBLIC void simsimd_l2_i4x2_ice(simsimd_i4x2_t const* a, simsimd_i4x2_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_i4x2_ice(simsimd_i4x2_t const* a, simsimd_i4x2_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_i4x2_ice(simsimd_i4x2_t const* a, simsimd_i4x2_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_i8_ice(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_i8_ice(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_i8_ice(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_u8_ice(simsimd_u8_t const* a, simsimd_u8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_u8_ice(simsimd_u8_t const* a, simsimd_u8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_u8_ice(simsimd_u8_t const* a, simsimd_u8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_bf16_genoa(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_bf16_genoa(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_bf16_genoa(simsimd_bf16_t const* a, simsimd_bf16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2_f16_sapphire(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_l2sq_f16_sapphire(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);
SIMSIMD_PUBLIC void simsimd_cos_f16_sapphire(simsimd_f16_t const* a, simsimd_f16_t const* b, simsimd_size_t n, simsimd_distance_t* result);

/*  SIMD-powered backends for AVX-INT8-VNNI extensions on Xeon 6 CPUs, including Sierra Forest and Granite Rapids.
 *  The packs many "efficiency" cores into a single socket, avoiding heavy 512-bit operations, and focusing on 256-bit ones.
 */
SIMSIMD_PUBLIC void simsimd_cos_i8_sierra(simsimd_i8_t const* a, simsimd_i8_t const* b, simsimd_size_t n, simsimd_distance_t* result);
// clang-format on

#define SIMSIMD_MAKE_L2SQ(name, input_type, accumulator_type, load_and_convert)                                 \
    SIMSIMD_PUBLIC void simsimd_l2sq_##input_type##_##name(simsimd_##input_type##_t const *a,                   \
                                                           simsimd_##input_type##_t const *b, simsimd_size_t n, \
                                                           simsimd_distance_t *result) {                        \
        simsimd_##accumulator_type##_t d2 = 0;                                                                  \
        for (simsimd_size_t i = 0; i != n; ++i) {                                                               \
            simsimd_##accumulator_type##_t ai = load_and_convert(a + i);                                        \
            simsimd_##accumulator_type##_t bi = load_and_convert(b + i);                                        \
            d2 += (ai - bi) * (ai - bi);                                                                        \
        }                                                                                                       \
        *result = d2;                                                                                           \
    }

#define SIMSIMD_MAKE_L2(name, input_type, accumulator_type, load_and_convert)                                 \
    SIMSIMD_PUBLIC void simsimd_l2_##input_type##_##name(simsimd_##input_type##_t const *a,                   \
                                                         simsimd_##input_type##_t const *b, simsimd_size_t n, \
                                                         simsimd_distance_t *result) {                        \
        simsimd_l2sq_##input_type##_##name(a, b, n, result);                                                  \
        *result = SIMSIMD_SQRT(*result);                                                                      \
    }

#define SIMSIMD_MAKE_COS(name, input_type, accumulator_type, load_and_convert)                                 \
    SIMSIMD_PUBLIC void simsimd_cos_##input_type##_##name(simsimd_##input_type##_t const *a,                   \
                                                          simsimd_##input_type##_t const *b, simsimd_size_t n, \
                                                          simsimd_distance_t *result) {                        \
        simsimd_##accumulator_type##_t ab = 0, a2 = 0, b2 = 0;                                                 \
        for (simsimd_size_t i = 0; i != n; ++i) {                                                              \
            simsimd_##accumulator_type##_t ai = load_and_convert(a + i);                                       \
            simsimd_##accumulator_type##_t bi = load_and_convert(b + i);                                       \
            ab += ai * bi;                                                                                     \
            a2 += ai * ai;                                                                                     \
            b2 += bi * bi;                                                                                     \
        }                                                                                                      \
        if (a2 == 0 && b2 == 0) { *result = 0; }                                                               \
        else if (ab == 0) { *result = 1; }                                                                     \
        else {                                                                                                 \
            simsimd_distance_t unclipped_result = 1 - ab * SIMSIMD_RSQRT(a2) * SIMSIMD_RSQRT(b2);              \
            *result = unclipped_result > 0 ? unclipped_result : 0;                                             \
        }                                                                                                      \
    }

SIMSIMD_MAKE_COS(serial, f64, f64, SIMSIMD_DEREFERENCE)  // simsimd_cos_f64_serial
SIMSIMD_MAKE_L2SQ(serial, f64, f64, SIMSIMD_DEREFERENCE) // simsimd_l2sq_f64_serial
SIMSIMD_MAKE_L2(serial, f64, f64, SIMSIMD_DEREFERENCE)   // simsimd_l2_f64_serial

SIMSIMD_MAKE_COS(serial, f32, f32, SIMSIMD_DEREFERENCE)  // simsimd_cos_f32_serial
SIMSIMD_MAKE_L2SQ(serial, f32, f32, SIMSIMD_DEREFERENCE) // simsimd_l2sq_f32_serial
SIMSIMD_MAKE_L2(serial, f32, f32, SIMSIMD_DEREFERENCE)   // simsimd_l2_f32_serial

SIMSIMD_MAKE_COS(serial, f16, f32, SIMSIMD_F16_TO_F32)  // simsimd_cos_f16_serial
SIMSIMD_MAKE_L2SQ(serial, f16, f32, SIMSIMD_F16_TO_F32) // simsimd_l2sq_f16_serial
SIMSIMD_MAKE_L2(serial, f16, f32, SIMSIMD_F16_TO_F32)   // simsimd_l2_f16_serial

SIMSIMD_MAKE_COS(serial, bf16, f32, SIMSIMD_BF16_TO_F32)  // simsimd_cos_bf16_serial
SIMSIMD_MAKE_L2SQ(serial, bf16, f32, SIMSIMD_BF16_TO_F32) // simsimd_l2sq_bf16_serial
SIMSIMD_MAKE_L2(serial, bf16, f32, SIMSIMD_BF16_TO_F32)   // simsimd_l2_bf16_serial

SIMSIMD_MAKE_COS(serial, i8, i32, SIMSIMD_DEREFERENCE)  // simsimd_cos_i8_serial
SIMSIMD_MAKE_L2SQ(serial, i8, i32, SIMSIMD_DEREFERENCE) // simsimd_l2sq_i8_serial
SIMSIMD_MAKE_L2(serial, i8, i32, SIMSIMD_DEREFERENCE)   // simsimd_l2_i8_serial

SIMSIMD_MAKE_COS(serial, u8, i32, SIMSIMD_DEREFERENCE)  // simsimd_cos_u8_serial
SIMSIMD_MAKE_L2SQ(serial, u8, i32, SIMSIMD_DEREFERENCE) // simsimd_l2sq_u8_serial
SIMSIMD_MAKE_L2(serial, u8, i32, SIMSIMD_DEREFERENCE)   // simsimd_l2_u8_serial

SIMSIMD_MAKE_COS(accurate, f32, f64, SIMSIMD_DEREFERENCE)  // simsimd_cos_f32_accurate
SIMSIMD_MAKE_L2SQ(accurate, f32, f64, SIMSIMD_DEREFERENCE) // simsimd_l2sq_f32_accurate
SIMSIMD_MAKE_L2(accurate, f32, f64, SIMSIMD_DEREFERENCE)   // simsimd_l2_f32_accurate

SIMSIMD_MAKE_COS(accurate, f16, f64, SIMSIMD_F16_TO_F32)  // simsimd_cos_f16_accurate
SIMSIMD_MAKE_L2SQ(accurate, f16, f64, SIMSIMD_F16_TO_F32) // simsimd_l2sq_f16_accurate
SIMSIMD_MAKE_L2(accurate, f16, f64, SIMSIMD_F16_TO_F32)   // simsimd_l2_f16_accurate

SIMSIMD_MAKE_COS(accurate, bf16, f64, SIMSIMD_BF16_TO_F32)  // simsimd_cos_bf16_accurate
SIMSIMD_MAKE_L2SQ(accurate, bf16, f64, SIMSIMD_BF16_TO_F32) // simsimd_l2sq_bf16_accurate
SIMSIMD_MAKE_L2(accurate, bf16, f64, SIMSIMD_BF16_TO_F32)   // simsimd_l2_bf16_accurate

#if _SIMSIMD_TARGET_ARM
#if SIMSIMD_TARGET_NEON
#pragma GCC push_options
#pragma GCC target("arch=armv8-a+simd")
#pragma clang attribute push(__attribute__((target("arch=armv8-a+simd"))), apply_to = function)

SIMSIMD_INTERNAL simsimd_f32_t _simsimd_sqrt_f32_neon(simsimd_f32_t x) {
    return vget_lane_f32(vsqrt_f32(vdup_n_f32(x)), 0);
}
SIMSIMD_INTERNAL simsimd_f64_t _simsimd_sqrt_f64_neon(simsimd_f64_t x) {
    return vget_lane_f64(vsqrt_f64(vdup_n_f64(x)), 0);
}
SIMSIMD_INTERNAL simsimd_distance_t _simsimd_cos_normalize_f32_neon(simsimd_f32_t ab, simsimd_f32_t a2,
                                                                    simsimd_f32_t b2) {
    if (a2 == 0 && b2 == 0) return 0;
    if (ab == 0) return 1;
    simsimd_f32_t squares_arr[2] = {a2, b2};
    float32x2_t squares = vld1_f32(squares_arr);
    // Unlike x86, Arm NEON manuals don't explicitly mention the accuracy of their `rsqrt` approximation.
    // Third-party research suggests that it's less accurate than SSE instructions, having an error of 1.5*2^-12.
    // One or two rounds of Newton-Raphson refinement are recommended to improve the accuracy.
    // https://github.com/lighttransport/embree-aarch64/issues/24
    // https://github.com/lighttransport/embree-aarch64/blob/3f75f8cb4e553d13dced941b5fefd4c826835a6b/common/math/math.h#L137-L145
    float32x2_t rsqrts = vrsqrte_f32(squares);
    // Perform two rounds of Newton-Raphson refinement:
    // https://en.wikipedia.org/wiki/Newton%27s_method
    rsqrts = vmul_f32(rsqrts, vrsqrts_f32(vmul_f32(squares, rsqrts), rsqrts));
    rsqrts = vmul_f32(rsqrts, vrsqrts_f32(vmul_f32(squares, rsqrts), rsqrts));
    vst1_f32(squares_arr, rsqrts);
    simsimd_distance_t result = 1 - ab * squares_arr[0] * squares_arr[1];
    return result > 0 ? result : 0;
}

SIMSIMD_INTERNAL simsimd_distance_t _simsimd_cos_normalize_f64_neon(simsimd_f64_t ab, simsimd_f64_t a2,
                                                                    simsimd_f64_t b2) {
    if (a2 == 0 && b2 == 0) return 0;
    if (ab == 0) return 1;
    simsimd_f64_t squares_arr[2] = {a2, b2};
    float64x2_t squares = vld1q_f64(squares_arr);

    // Unlike x86, Arm NEON manuals don't explicitly mention the accuracy of their `rsqrt` approximation.
    // Third-party research suggests that it's less accurate than SSE instructions, having an error of 1.5*2^-12.
    // One or two rounds of Newton-Raphson refinement are recommended to improve the accuracy.
    // https://github.com/lighttransport/embree-aarch64/issues/24
    // https://github.com/lighttransport/embree-aarch64/blob/3f75f8cb4e553d13dced941b5fefd4c826835a6b/common/math/math.h#L137-L145
    float64x2_t rsqrts = vrsqrteq_f64(squares);
    // Perform two rounds of Newton-Raphson refinement:
    // https://en.wikipedia.org/wiki/Newton%27s_method
    rsqrts = vmulq_f64(rsqrts, vrsqrtsq_f64(vmulq_f64(squares, rsqrts), rsqrts));
    rsqrts = vmulq_f64(rsqrts, vrsqrtsq_f64(vmulq_f64(squares, rsqrts), rsqrts));
    vst1q_f64(squares_arr, rsqrts);
    simsimd_distance_t result = 1 - ab * squares_arr[0] * squares_arr[1];
    return result > 0 ? result : 0;
}

SIMSIMD_PUBLIC void simsimd_l2_f32_neon(simsimd_f32_t const *a, simsimd_f32_t const *b, simsimd_size_t n,
                                        simsimd_distance_t *result) {
    simsimd_l2sq_f32_neon(a, b, n, result);
    *result = _simsimd_sqrt_f64_neon(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_f32_neon(simsimd_f32_t const *a, simsimd_f32_t const *b, simsimd_size_t n,
                                          simsimd_distance_t *result) {
    float32x4_t sum_vec = vdupq_n_f32(0);
    simsimd_size_t i = 0;
    for (; i + 4 <= n; i += 4) {
        float32x4_t a_vec = vld1q_f32(a + i);
        float32x4_t b_vec = vld1q_f32(b + i);
        float32x4_t diff_vec = vsubq_f32(a_vec, b_vec);
        sum_vec = vfmaq_f32(sum_vec, diff_vec, diff_vec);
    }
    simsimd_f32_t sum = vaddvq_f32(sum_vec);
    for (; i < n; ++i) {
        simsimd_f32_t diff = a[i] - b[i];
        sum += diff * diff;
    }
    *result = sum;
}

SIMSIMD_PUBLIC void simsimd_cos_f32_neon(simsimd_f32_t const *a, simsimd_f32_t const *b, simsimd_size_t n,
                                         simsimd_distance_t *result) {
    float32x4_t ab_vec = vdupq_n_f32(0), a2_vec = vdupq_n_f32(0), b2_vec = vdupq_n_f32(0);
    simsimd_size_t i = 0;
    for (; i + 4 <= n; i += 4) {
        float32x4_t a_vec = vld1q_f32(a + i);
        float32x4_t b_vec = vld1q_f32(b + i);
        ab_vec = vfmaq_f32(ab_vec, a_vec, b_vec);
        a2_vec = vfmaq_f32(a2_vec, a_vec, a_vec);
        b2_vec = vfmaq_f32(b2_vec, b_vec, b_vec);
    }
    simsimd_f32_t ab = vaddvq_f32(ab_vec), a2 = vaddvq_f32(a2_vec), b2 = vaddvq_f32(b2_vec);
    for (; i < n; ++i) {
        simsimd_f32_t ai = a[i], bi = b[i];
        ab += ai * bi, a2 += ai * ai, b2 += bi * bi;
    }

    *result = _simsimd_cos_normalize_f64_neon(ab, a2, b2);
}

SIMSIMD_PUBLIC void simsimd_l2_f64_neon(simsimd_f64_t const *a, simsimd_f64_t const *b, simsimd_size_t n,
                                        simsimd_distance_t *result) {
    simsimd_l2sq_f64_neon(a, b, n, result);
    *result = _simsimd_sqrt_f64_neon(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_f64_neon(simsimd_f64_t const *a, simsimd_f64_t const *b, simsimd_size_t n,
                                          simsimd_distance_t *result) {
    float64x2_t sum_vec = vdupq_n_f64(0);
    simsimd_size_t i = 0;
    for (; i + 2 <= n; i += 2) {
        float64x2_t a_vec = vld1q_f64(a + i);
        float64x2_t b_vec = vld1q_f64(b + i);
        float64x2_t diff_vec = vsubq_f64(a_vec, b_vec);
        sum_vec = vfmaq_f64(sum_vec, diff_vec, diff_vec);
    }
    simsimd_f64_t sum = vaddvq_f64(sum_vec);
    for (; i < n; ++i) {
        simsimd_f64_t diff = a[i] - b[i];
        sum += diff * diff;
    }
    *result = sum;
}

SIMSIMD_PUBLIC void simsimd_cos_f64_neon(simsimd_f64_t const *a, simsimd_f64_t const *b, simsimd_size_t n,
                                         simsimd_distance_t *result) {
    float64x2_t ab_vec = vdupq_n_f64(0), a2_vec = vdupq_n_f64(0), b2_vec = vdupq_n_f64(0);
    simsimd_size_t i = 0;
    for (; i + 2 <= n; i += 2) {
        float64x2_t a_vec = vld1q_f64(a + i);
        float64x2_t b_vec = vld1q_f64(b + i);
        ab_vec = vfmaq_f64(ab_vec, a_vec, b_vec);
        a2_vec = vfmaq_f64(a2_vec, a_vec, a_vec);
        b2_vec = vfmaq_f64(b2_vec, b_vec, b_vec);
    }
    simsimd_f64_t ab = vaddvq_f64(ab_vec), a2 = vaddvq_f64(a2_vec), b2 = vaddvq_f64(b2_vec);
    for (; i < n; ++i) {
        simsimd_f64_t ai = a[i], bi = b[i];
        ab += ai * bi, a2 += ai * ai, b2 += bi * bi;
    }

    *result = _simsimd_cos_normalize_f64_neon(ab, a2, b2);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_NEON

#if SIMSIMD_TARGET_NEON_F16
#pragma GCC push_options
#pragma GCC target("arch=armv8.2-a+simd+fp16")
#pragma clang attribute push(__attribute__((target("arch=armv8.2-a+simd+fp16"))), apply_to = function)

SIMSIMD_PUBLIC void simsimd_l2_f16_neon(simsimd_f16_t const *a, simsimd_f16_t const *b, simsimd_size_t n,
                                        simsimd_distance_t *result) {
    simsimd_l2sq_f16_neon(a, b, n, result);
    *result = _simsimd_sqrt_f32_neon(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_f16_neon(simsimd_f16_t const *a, simsimd_f16_t const *b, simsimd_size_t n,
                                          simsimd_distance_t *result) {
    float32x4_t a_vec, b_vec;
    float32x4_t sum_vec = vdupq_n_f32(0);

simsimd_l2sq_f16_neon_cycle:
    if (n < 4) {
        a_vec = vcvt_f32_f16(_simsimd_partial_load_f16x4_neon(a, n));
        b_vec = vcvt_f32_f16(_simsimd_partial_load_f16x4_neon(b, n));
        n = 0;
    }
    else {
        a_vec = vcvt_f32_f16(vld1_f16((simsimd_f16_for_arm_simd_t const *)a));
        b_vec = vcvt_f32_f16(vld1_f16((simsimd_f16_for_arm_simd_t const *)b));
        n -= 4, a += 4, b += 4;
    }
    float32x4_t diff_vec = vsubq_f32(a_vec, b_vec);
    sum_vec = vfmaq_f32(sum_vec, diff_vec, diff_vec);
    if (n) goto simsimd_l2sq_f16_neon_cycle;

    *result = vaddvq_f32(sum_vec);
}

SIMSIMD_PUBLIC void simsimd_cos_f16_neon(simsimd_f16_t const *a, simsimd_f16_t const *b, simsimd_size_t n,
                                         simsimd_distance_t *result) {
    float32x4_t ab_vec = vdupq_n_f32(0), a2_vec = vdupq_n_f32(0), b2_vec = vdupq_n_f32(0);
    float32x4_t a_vec, b_vec;

simsimd_cos_f16_neon_cycle:
    if (n < 4) {
        a_vec = vcvt_f32_f16(_simsimd_partial_load_f16x4_neon(a, n));
        b_vec = vcvt_f32_f16(_simsimd_partial_load_f16x4_neon(b, n));
        n = 0;
    }
    else {
        a_vec = vcvt_f32_f16(vld1_f16((simsimd_f16_for_arm_simd_t const *)a));
        b_vec = vcvt_f32_f16(vld1_f16((simsimd_f16_for_arm_simd_t const *)b));
        n -= 4, a += 4, b += 4;
    }
    ab_vec = vfmaq_f32(ab_vec, a_vec, b_vec);
    a2_vec = vfmaq_f32(a2_vec, a_vec, a_vec);
    b2_vec = vfmaq_f32(b2_vec, b_vec, b_vec);
    if (n) goto simsimd_cos_f16_neon_cycle;

    simsimd_f32_t ab = vaddvq_f32(ab_vec), a2 = vaddvq_f32(a2_vec), b2 = vaddvq_f32(b2_vec);
    *result = _simsimd_cos_normalize_f32_neon(ab, a2, b2);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_NEON_F16

#if SIMSIMD_TARGET_NEON_BF16
#pragma GCC push_options
#pragma GCC target("arch=armv8.6-a+simd+bf16")
#pragma clang attribute push(__attribute__((target("arch=armv8.6-a+simd+bf16"))), apply_to = function)

SIMSIMD_PUBLIC void simsimd_cos_bf16_neon(simsimd_bf16_t const *a, simsimd_bf16_t const *b, simsimd_size_t n,
                                          simsimd_distance_t *result) {

    // Similar to `simsimd_cos_i8_neon`, we can use the `BFMMLA` instruction through
    // the `vbfmmlaq_f32` intrinsic to compute matrix products and later drop 1/4 of values.
    // The only difference is that `zip` isn't provided for `bf16` and we need to reinterpret back
    // and forth before zipping. Same as with integers, on modern Arm CPUs, this "smart"
    // approach is actually slower by around 25%.
    //
    //   float32x4_t products_low_vec = vdupq_n_f32(0.0f);
    //   float32x4_t products_high_vec = vdupq_n_f32(0.0f);
    //   for (; i + 8 <= n; i += 8) {
    //       bfloat16x8_t a_vec = vld1q_bf16((simsimd_bf16_for_arm_simd_t const*)a + i);
    //       bfloat16x8_t b_vec = vld1q_bf16((simsimd_bf16_for_arm_simd_t const*)b + i);
    //       int16x8_t a_vec_s16 = vreinterpretq_s16_bf16(a_vec);
    //       int16x8_t b_vec_s16 = vreinterpretq_s16_bf16(b_vec);
    //       int16x8x2_t y_w_vecs_s16 = vzipq_s16(a_vec_s16, b_vec_s16);
    //       bfloat16x8_t y_vec = vreinterpretq_bf16_s16(y_w_vecs_s16.val[0]);
    //       bfloat16x8_t w_vec = vreinterpretq_bf16_s16(y_w_vecs_s16.val[1]);
    //       bfloat16x4_t a_low = vget_low_bf16(a_vec);
    //       bfloat16x4_t b_low = vget_low_bf16(b_vec);
    //       bfloat16x4_t a_high = vget_high_bf16(a_vec);
    //       bfloat16x4_t b_high = vget_high_bf16(b_vec);
    //       bfloat16x8_t x_vec = vcombine_bf16(a_low, b_low);
    //       bfloat16x8_t v_vec = vcombine_bf16(a_high, b_high);
    //       products_low_vec = vbfmmlaq_f32(products_low_vec, x_vec, y_vec);
    //       products_high_vec = vbfmmlaq_f32(products_high_vec, v_vec, w_vec);
    //   }
    //   float32x4_t products_vec = vaddq_f32(products_high_vec, products_low_vec);
    //   simsimd_f32_t a2 = products_vec[0], ab = products_vec[1], b2 = products_vec[3];
    //
    // Another way of accomplishing the same thing is to process the odd and even elements separately,
    // using special `vbfmlaltq_f32` and `vbfmlalbq_f32` intrinsics:
    //
    //      ab_high_vec = vbfmlaltq_f32(ab_high_vec, a_vec, b_vec);
    //      ab_low_vec = vbfmlalbq_f32(ab_low_vec, a_vec, b_vec);
    //      a2_high_vec = vbfmlaltq_f32(a2_high_vec, a_vec, a_vec);
    //      a2_low_vec = vbfmlalbq_f32(a2_low_vec, a_vec, a_vec);
    //      b2_high_vec = vbfmlaltq_f32(b2_high_vec, b_vec, b_vec);
    //      b2_low_vec = vbfmlalbq_f32(b2_low_vec, b_vec, b_vec);
    //

    float32x4_t ab_vec = vdupq_n_f32(0);
    float32x4_t a2_vec = vdupq_n_f32(0);
    float32x4_t b2_vec = vdupq_n_f32(0);
    bfloat16x8_t a_vec, b_vec;

simsimd_cos_bf16_neon_cycle:
    if (n < 8) {
        a_vec = _simsimd_partial_load_bf16x8_neon(a, n);
        b_vec = _simsimd_partial_load_bf16x8_neon(b, n);
        n = 0;
    }
    else {
        a_vec = vld1q_bf16((simsimd_bf16_for_arm_simd_t const *)a);
        b_vec = vld1q_bf16((simsimd_bf16_for_arm_simd_t const *)b);
        n -= 8, a += 8, b += 8;
    }
    ab_vec = vbfdotq_f32(ab_vec, a_vec, b_vec);
    a2_vec = vbfdotq_f32(a2_vec, a_vec, a_vec);
    b2_vec = vbfdotq_f32(b2_vec, b_vec, b_vec);
    if (n) goto simsimd_cos_bf16_neon_cycle;

    // Avoid `simsimd_approximate_inverse_square_root` on Arm NEON
    simsimd_f32_t ab = vaddvq_f32(ab_vec), a2 = vaddvq_f32(a2_vec), b2 = vaddvq_f32(b2_vec);
    *result = _simsimd_cos_normalize_f32_neon(ab, a2, b2);
}

SIMSIMD_PUBLIC void simsimd_l2_bf16_neon(simsimd_bf16_t const *a, simsimd_bf16_t const *b, simsimd_size_t n,
                                         simsimd_distance_t *result) {
    simsimd_l2sq_bf16_neon(a, b, n, result);
    *result = _simsimd_sqrt_f64_neon(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_bf16_neon(simsimd_bf16_t const *a, simsimd_bf16_t const *b, simsimd_size_t n,
                                           simsimd_distance_t *result) {
    float32x4_t diff_high_vec, diff_low_vec;
    float32x4_t sum_high_vec = vdupq_n_f32(0), sum_low_vec = vdupq_n_f32(0);

simsimd_l2sq_bf16_neon_cycle:
    if (n < 8) {
        bfloat16x8_t a_vec = _simsimd_partial_load_bf16x8_neon(a, n);
        bfloat16x8_t b_vec = _simsimd_partial_load_bf16x8_neon(b, n);
        diff_high_vec = vsubq_f32(vcvt_f32_bf16(vget_high_bf16(a_vec)), vcvt_f32_bf16(vget_high_bf16(b_vec)));
        diff_low_vec = vsubq_f32(vcvt_f32_bf16(vget_low_bf16(a_vec)), vcvt_f32_bf16(vget_low_bf16(b_vec)));
        n = 0;
    }
    else {
        bfloat16x8_t a_vec = vld1q_bf16((simsimd_bf16_for_arm_simd_t const *)a);
        bfloat16x8_t b_vec = vld1q_bf16((simsimd_bf16_for_arm_simd_t const *)b);
        diff_high_vec = vsubq_f32(vcvt_f32_bf16(vget_high_bf16(a_vec)), vcvt_f32_bf16(vget_high_bf16(b_vec)));
        diff_low_vec = vsubq_f32(vcvt_f32_bf16(vget_low_bf16(a_vec)), vcvt_f32_bf16(vget_low_bf16(b_vec)));
        n -= 8, a += 8, b += 8;
    }
    sum_high_vec = vfmaq_f32(sum_high_vec, diff_high_vec, diff_high_vec);
    sum_low_vec = vfmaq_f32(sum_low_vec, diff_low_vec, diff_low_vec);
    if (n) goto simsimd_l2sq_bf16_neon_cycle;

    *result = vaddvq_f32(vaddq_f32(sum_high_vec, sum_low_vec));
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_NEON_BF16

#if SIMSIMD_TARGET_NEON_I8
#pragma GCC push_options
#pragma GCC target("arch=armv8.2-a+dotprod+i8mm")
#pragma clang attribute push(__attribute__((target("arch=armv8.2-a+dotprod+i8mm"))), apply_to = function)

SIMSIMD_PUBLIC void simsimd_l2_i8_neon(simsimd_i8_t const *a, simsimd_i8_t const *b, simsimd_size_t n,
                                       simsimd_distance_t *result) {
    simsimd_l2sq_i8_neon(a, b, n, result);
    *result = _simsimd_sqrt_f32_neon(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_i8_neon(simsimd_i8_t const *a, simsimd_i8_t const *b, simsimd_size_t n,
                                         simsimd_distance_t *result) {

    // The naive approach is to upcast 8-bit signed integers into 16-bit signed integers
    // for subtraction, then multiply within 16-bit integers and accumulate the results
    // into 32-bit integers. This approach is slow on modern Arm CPUs. On Graviton 4,
    // that approach results in 17 GB/s of throughput, compared to 39 GB/s for `i8`
    // dot-products.
    //
    // Luckily we can use the `vabdq_s8` which technically returns `i8` values, but it's a
    // matter of reinterpret-casting! That approach boosts us to 33 GB/s of throughput.
    uint32x4_t d2_vec = vdupq_n_u32(0);
    simsimd_size_t i = 0;
    for (; i + 16 <= n; i += 16) {
        int8x16_t a_vec = vld1q_s8(a + i);
        int8x16_t b_vec = vld1q_s8(b + i);
        uint8x16_t d_vec = vreinterpretq_u8_s8(vabdq_s8(a_vec, b_vec));
        d2_vec = vdotq_u32(d2_vec, d_vec, d_vec);
    }
    simsimd_u32_t d2 = vaddvq_u32(d2_vec);
    for (; i < n; ++i) {
        simsimd_i32_t n = (simsimd_i32_t)a[i] - b[i];
        d2 += (simsimd_u32_t)(n * n);
    }
    *result = d2;
}

SIMSIMD_PUBLIC void simsimd_cos_i8_neon(simsimd_i8_t const *a, simsimd_i8_t const *b, simsimd_size_t n,
                                        simsimd_distance_t *result) {

    simsimd_size_t i = 0;

    // Variant 1.
    // If the 128-bit `vdot_s32` intrinsic is unavailable, we can use the 64-bit `vdot_s32`.
    //
    //  int32x4_t ab_vec = vdupq_n_s32(0);
    //  int32x4_t a2_vec = vdupq_n_s32(0);
    //  int32x4_t b2_vec = vdupq_n_s32(0);
    //  for (simsimd_size_t i = 0; i != n; i += 8) {
    //      int16x8_t a_vec = vmovl_s8(vld1_s8(a + i));
    //      int16x8_t b_vec = vmovl_s8(vld1_s8(b + i));
    //      int16x8_t ab_part_vec = vmulq_s16(a_vec, b_vec);
    //      int16x8_t a2_part_vec = vmulq_s16(a_vec, a_vec);
    //      int16x8_t b2_part_vec = vmulq_s16(b_vec, b_vec);
    //      ab_vec = vaddq_s32(ab_vec, vaddq_s32(vmovl_s16(vget_high_s16(ab_part_vec)), //
    //                                           vmovl_s16(vget_low_s16(ab_part_vec))));
    //      a2_vec = vaddq_s32(a2_vec, vaddq_s32(vmovl_s16(vget_high_s16(a2_part_vec)), //
    //                                           vmovl_s16(vget_low_s16(a2_part_vec))));
    //      b2_vec = vaddq_s32(b2_vec, vaddq_s32(vmovl_s16(vget_high_s16(b2_part_vec)), //
    //                                           vmovl_s16(vget_low_s16(b2_part_vec))));
    //  }
    //
    // Variant 2.
    // With the 128-bit `vdotq_s32` intrinsic, we can use the following code:
    //
    //  for (; i + 16 <= n; i += 16) {
    //      int8x16_t a_vec = vld1q_s8(a + i);
    //      int8x16_t b_vec = vld1q_s8(b + i);
    //      ab_vec = vdotq_s32(ab_vec, a_vec, b_vec);
    //      a2_vec = vdotq_s32(a2_vec, a_vec, a_vec);
    //      b2_vec = vdotq_s32(b2_vec, b_vec, b_vec);
    //  }
    //
    // Variant 3.
    // To use MMLA instructions, we need to reorganize the contents of the vectors.
    // On input we have `a_vec` and `b_vec`:
    //
    //   a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15]
    //   b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7], b[8], b[9], b[10], b[11], b[12], b[13], b[14], b[15]
    //
    // We will be multiplying matrices of size 2x8 and 8x2. So we need to perform a few shuffles:
    //
    //   X =
    //      a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
    //      b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7]
    //   Y =
    //      a[0], b[0],
    //      a[1], b[1],
    //      a[2], b[2],
    //      a[3], b[3],
    //      a[4], b[4],
    //      a[5], b[5],
    //      a[6], b[6],
    //      a[7], b[7]
    //
    //   V =
    //      a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15],
    //      b[8], b[9], b[10], b[11], b[12], b[13], b[14], b[15]
    //   W =
    //      a[8],   b[8],
    //      a[9],   b[9],
    //      a[10],  b[10],
    //      a[11],  b[11],
    //      a[12],  b[12],
    //      a[13],  b[13],
    //      a[14],  b[14],
    //      a[15],  b[15]
    //
    // Performing matrix multiplications we can aggregate into a matrix `products_low_vec` and `products_high_vec`:
    //
    //      X * X, X * Y                V * W, V * V
    //      Y * X, Y * Y                W * W, W * V
    //
    // Of those values we need only 3/4, as the (X * Y) and (Y * X) are the same.
    //
    //      int32x4_t products_low_vec = vdupq_n_s32(0), products_high_vec = vdupq_n_s32(0);
    //      int8x16_t a_low_b_low_vec, a_high_b_high_vec;
    //      for (; i + 16 <= n; i += 16) {
    //          int8x16_t a_vec = vld1q_s8(a + i);
    //          int8x16_t b_vec = vld1q_s8(b + i);
    //          int8x16x2_t y_w_vecs = vzipq_s8(a_vec, b_vec);
    //          int8x16_t x_vec = vcombine_s8(vget_low_s8(a_vec), vget_low_s8(b_vec));
    //          int8x16_t v_vec = vcombine_s8(vget_high_s8(a_vec), vget_high_s8(b_vec));
    //          products_low_vec = vmmlaq_s32(products_low_vec, x_vec, y_w_vecs.val[0]);
    //          products_high_vec = vmmlaq_s32(products_high_vec, v_vec, y_w_vecs.val[1]);
    //      }
    //      int32x4_t products_vec = vaddq_s32(products_high_vec, products_low_vec);
    //      simsimd_i32_t a2 = products_vec[0];
    //      simsimd_i32_t ab = products_vec[1];
    //      simsimd_i32_t b2 = products_vec[3];
    //
    // That solution is elegant, but it requires the additional `+i8mm` extension and is currently slower,
    // at least on AWS Graviton 3.
    int32x4_t ab_vec = vdupq_n_s32(0);
    int32x4_t a2_vec = vdupq_n_s32(0);
    int32x4_t b2_vec = vdupq_n_s32(0);
    for (; i + 16 <= n; i += 16) {
        int8x16_t a_vec = vld1q_s8(a + i);
        int8x16_t b_vec = vld1q_s8(b + i);
        ab_vec = vdotq_s32(ab_vec, a_vec, b_vec);
        a2_vec = vdotq_s32(a2_vec, a_vec, a_vec);
        b2_vec = vdotq_s32(b2_vec, b_vec, b_vec);
    }
    simsimd_i32_t ab = vaddvq_s32(ab_vec);
    simsimd_i32_t a2 = vaddvq_s32(a2_vec);
    simsimd_i32_t b2 = vaddvq_s32(b2_vec);

    // Take care of the tail:
    for (; i < n; ++i) {
        simsimd_i32_t ai = a[i], bi = b[i];
        ab += ai * bi, a2 += ai * ai, b2 += bi * bi;
    }

    *result = _simsimd_cos_normalize_f32_neon(ab, a2, b2);
}

SIMSIMD_PUBLIC void simsimd_l2_u8_neon(simsimd_u8_t const *a, simsimd_u8_t const *b, simsimd_size_t n,
                                       simsimd_distance_t *result) {
    simsimd_l2sq_u8_neon(a, b, n, result);
    *result = _simsimd_sqrt_f32_neon(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_u8_neon(simsimd_u8_t const *a, simsimd_u8_t const *b, simsimd_size_t n,
                                         simsimd_distance_t *result) {
    uint32x4_t d2_vec = vdupq_n_u32(0);
    simsimd_size_t i = 0;
    for (; i + 16 <= n; i += 16) {
        uint8x16_t a_vec = vld1q_u8(a + i);
        uint8x16_t b_vec = vld1q_u8(b + i);
        uint8x16_t d_vec = vabdq_u8(a_vec, b_vec);
        d2_vec = vdotq_u32(d2_vec, d_vec, d_vec);
    }
    simsimd_u32_t d2 = vaddvq_u32(d2_vec);
    for (; i < n; ++i) {
        simsimd_i32_t n = (simsimd_i32_t)a[i] - b[i];
        d2 += (simsimd_u32_t)(n * n);
    }
    *result = d2;
}

SIMSIMD_PUBLIC void simsimd_cos_u8_neon(simsimd_u8_t const *a, simsimd_u8_t const *b, simsimd_size_t n,
                                        simsimd_distance_t *result) {

    simsimd_size_t i = 0;
    uint32x4_t ab_vec = vdupq_n_u32(0);
    uint32x4_t a2_vec = vdupq_n_u32(0);
    uint32x4_t b2_vec = vdupq_n_u32(0);
    for (; i + 16 <= n; i += 16) {
        uint8x16_t a_vec = vld1q_u8(a + i);
        uint8x16_t b_vec = vld1q_u8(b + i);
        ab_vec = vdotq_u32(ab_vec, a_vec, b_vec);
        a2_vec = vdotq_u32(a2_vec, a_vec, a_vec);
        b2_vec = vdotq_u32(b2_vec, b_vec, b_vec);
    }
    simsimd_u32_t ab = vaddvq_u32(ab_vec);
    simsimd_u32_t a2 = vaddvq_u32(a2_vec);
    simsimd_u32_t b2 = vaddvq_u32(b2_vec);

    // Take care of the tail:
    for (; i < n; ++i) {
        simsimd_u32_t ai = a[i], bi = b[i];
        ab += ai * bi, a2 += ai * ai, b2 += bi * bi;
    }

    *result = _simsimd_cos_normalize_f32_neon(ab, a2, b2);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_NEON_I8

#if SIMSIMD_TARGET_SVE
#pragma GCC push_options
#pragma GCC target("arch=armv8.2-a+sve")
#pragma clang attribute push(__attribute__((target("arch=armv8.2-a+sve"))), apply_to = function)

SIMSIMD_PUBLIC void simsimd_l2_f32_sve(simsimd_f32_t const *a, simsimd_f32_t const *b, simsimd_size_t n,
                                       simsimd_distance_t *result) {
    simsimd_l2sq_f32_sve(a, b, n, result);
    *result = _simsimd_sqrt_f64_neon(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_f32_sve(simsimd_f32_t const *a, simsimd_f32_t const *b, simsimd_size_t n,
                                         simsimd_distance_t *result) {
    simsimd_size_t i = 0;
    svfloat32_t d2_vec = svdupq_n_f32(0.f, 0.f, 0.f, 0.f);
    do {
        svbool_t pg_vec = svwhilelt_b32((unsigned int)i, (unsigned int)n);
        svfloat32_t a_vec = svld1_f32(pg_vec, a + i);
        svfloat32_t b_vec = svld1_f32(pg_vec, b + i);
        svfloat32_t a_minus_b_vec = svsub_f32_x(pg_vec, a_vec, b_vec);
        d2_vec = svmla_f32_x(pg_vec, d2_vec, a_minus_b_vec, a_minus_b_vec);
        i += svcntw();
    } while (i < n);
    simsimd_f32_t d2 = svaddv_f32(svptrue_b32(), d2_vec);
    *result = d2;
}

SIMSIMD_PUBLIC void simsimd_cos_f32_sve(simsimd_f32_t const *a, simsimd_f32_t const *b, simsimd_size_t n,
                                        simsimd_distance_t *result) {
    simsimd_size_t i = 0;
    svfloat32_t ab_vec = svdupq_n_f32(0.f, 0.f, 0.f, 0.f);
    svfloat32_t a2_vec = svdupq_n_f32(0.f, 0.f, 0.f, 0.f);
    svfloat32_t b2_vec = svdupq_n_f32(0.f, 0.f, 0.f, 0.f);
    do {
        svbool_t pg_vec = svwhilelt_b32((unsigned int)i, (unsigned int)n);
        svfloat32_t a_vec = svld1_f32(pg_vec, a + i);
        svfloat32_t b_vec = svld1_f32(pg_vec, b + i);
        ab_vec = svmla_f32_x(pg_vec, ab_vec, a_vec, b_vec);
        a2_vec = svmla_f32_x(pg_vec, a2_vec, a_vec, a_vec);
        b2_vec = svmla_f32_x(pg_vec, b2_vec, b_vec, b_vec);
        i += svcntw();
    } while (i < n);

    simsimd_f32_t ab = svaddv_f32(svptrue_b32(), ab_vec);
    simsimd_f32_t a2 = svaddv_f32(svptrue_b32(), a2_vec);
    simsimd_f32_t b2 = svaddv_f32(svptrue_b32(), b2_vec);
    *result = _simsimd_cos_normalize_f64_neon(ab, a2, b2);
}

SIMSIMD_PUBLIC void simsimd_l2_f64_sve(simsimd_f64_t const *a, simsimd_f64_t const *b, simsimd_size_t n,
                                       simsimd_distance_t *result) {
    simsimd_l2sq_f64_sve(a, b, n, result);
    *result = _simsimd_sqrt_f64_neon(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_f64_sve(simsimd_f64_t const *a, simsimd_f64_t const *b, simsimd_size_t n,
                                         simsimd_distance_t *result) {
    simsimd_size_t i = 0;
    svfloat64_t d2_vec = svdupq_n_f64(0.0, 0.0);
    do {
        svbool_t pg_vec = svwhilelt_b64((unsigned int)i, (unsigned int)n);
        svfloat64_t a_vec = svld1_f64(pg_vec, a + i);
        svfloat64_t b_vec = svld1_f64(pg_vec, b + i);
        svfloat64_t a_minus_b_vec = svsub_f64_x(pg_vec, a_vec, b_vec);
        d2_vec = svmla_f64_x(pg_vec, d2_vec, a_minus_b_vec, a_minus_b_vec);
        i += svcntd();
    } while (i < n);
    simsimd_f64_t d2 = svaddv_f64(svptrue_b32(), d2_vec);
    *result = d2;
}

SIMSIMD_PUBLIC void simsimd_cos_f64_sve(simsimd_f64_t const *a, simsimd_f64_t const *b, simsimd_size_t n,
                                        simsimd_distance_t *result) {
    simsimd_size_t i = 0;
    svfloat64_t ab_vec = svdupq_n_f64(0.0, 0.0);
    svfloat64_t a2_vec = svdupq_n_f64(0.0, 0.0);
    svfloat64_t b2_vec = svdupq_n_f64(0.0, 0.0);
    do {
        svbool_t pg_vec = svwhilelt_b64((unsigned int)i, (unsigned int)n);
        svfloat64_t a_vec = svld1_f64(pg_vec, a + i);
        svfloat64_t b_vec = svld1_f64(pg_vec, b + i);
        ab_vec = svmla_f64_x(pg_vec, ab_vec, a_vec, b_vec);
        a2_vec = svmla_f64_x(pg_vec, a2_vec, a_vec, a_vec);
        b2_vec = svmla_f64_x(pg_vec, b2_vec, b_vec, b_vec);
        i += svcntd();
    } while (i < n);

    simsimd_f64_t ab = svaddv_f64(svptrue_b32(), ab_vec);
    simsimd_f64_t a2 = svaddv_f64(svptrue_b32(), a2_vec);
    simsimd_f64_t b2 = svaddv_f64(svptrue_b32(), b2_vec);
    *result = _simsimd_cos_normalize_f64_neon(ab, a2, b2);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_SVE

#if SIMSIMD_TARGET_SVE_F16
#pragma GCC push_options
#pragma GCC target("arch=armv8.2-a+sve+fp16")
#pragma clang attribute push(__attribute__((target("arch=armv8.2-a+sve+fp16"))), apply_to = function)

SIMSIMD_PUBLIC void simsimd_l2_f16_sve(simsimd_f16_t const *a, simsimd_f16_t const *b, simsimd_size_t n,
                                       simsimd_distance_t *result) {
    simsimd_l2sq_f16_sve(a, b, n, result);
    *result = _simsimd_sqrt_f32_neon(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_f16_sve(simsimd_f16_t const *a_enum, simsimd_f16_t const *b_enum, simsimd_size_t n,
                                         simsimd_distance_t *result) {
    simsimd_size_t i = 0;
    svfloat16_t d2_vec = svdupq_n_f16(0, 0, 0, 0, 0, 0, 0, 0);
    simsimd_f16_for_arm_simd_t const *a = (simsimd_f16_for_arm_simd_t const *)(a_enum);
    simsimd_f16_for_arm_simd_t const *b = (simsimd_f16_for_arm_simd_t const *)(b_enum);
    do {
        svbool_t pg_vec = svwhilelt_b16((unsigned int)i, (unsigned int)n);
        svfloat16_t a_vec = svld1_f16(pg_vec, a + i);
        svfloat16_t b_vec = svld1_f16(pg_vec, b + i);
        svfloat16_t a_minus_b_vec = svsub_f16_x(pg_vec, a_vec, b_vec);
        d2_vec = svmla_f16_x(pg_vec, d2_vec, a_minus_b_vec, a_minus_b_vec);
        i += svcnth();
    } while (i < n);
    simsimd_f16_for_arm_simd_t d2_f16 = svaddv_f16(svptrue_b16(), d2_vec);
    *result = d2_f16;
}

SIMSIMD_PUBLIC void simsimd_cos_f16_sve(simsimd_f16_t const *a_enum, simsimd_f16_t const *b_enum, simsimd_size_t n,
                                        simsimd_distance_t *result) {
    simsimd_size_t i = 0;
    svfloat16_t ab_vec = svdupq_n_f16(0, 0, 0, 0, 0, 0, 0, 0);
    svfloat16_t a2_vec = svdupq_n_f16(0, 0, 0, 0, 0, 0, 0, 0);
    svfloat16_t b2_vec = svdupq_n_f16(0, 0, 0, 0, 0, 0, 0, 0);
    simsimd_f16_for_arm_simd_t const *a = (simsimd_f16_for_arm_simd_t const *)(a_enum);
    simsimd_f16_for_arm_simd_t const *b = (simsimd_f16_for_arm_simd_t const *)(b_enum);
    do {
        svbool_t pg_vec = svwhilelt_b16((unsigned int)i, (unsigned int)n);
        svfloat16_t a_vec = svld1_f16(pg_vec, a + i);
        svfloat16_t b_vec = svld1_f16(pg_vec, b + i);
        ab_vec = svmla_f16_x(pg_vec, ab_vec, a_vec, b_vec);
        a2_vec = svmla_f16_x(pg_vec, a2_vec, a_vec, a_vec);
        b2_vec = svmla_f16_x(pg_vec, b2_vec, b_vec, b_vec);
        i += svcnth();
    } while (i < n);

    simsimd_f16_for_arm_simd_t ab = svaddv_f16(svptrue_b16(), ab_vec);
    simsimd_f16_for_arm_simd_t a2 = svaddv_f16(svptrue_b16(), a2_vec);
    simsimd_f16_for_arm_simd_t b2 = svaddv_f16(svptrue_b16(), b2_vec);
    *result = _simsimd_cos_normalize_f32_neon(ab, a2, b2);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_SVE_F16

#if SIMSIMD_TARGET_SVE_BF16
#pragma GCC push_options
#pragma GCC target("arch=armv8.2-a+sve+bf16")
#pragma clang attribute push(__attribute__((target("arch=armv8.2-a+sve+bf16"))), apply_to = function)

SIMSIMD_PUBLIC void simsimd_l2_bf16_sve(simsimd_bf16_t const *a, simsimd_bf16_t const *b, simsimd_size_t n,
                                        simsimd_distance_t *result) {
    simsimd_l2sq_bf16_sve(a, b, n, result);
    *result = _simsimd_sqrt_f32_neon(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_bf16_sve(simsimd_bf16_t const *a_enum, simsimd_bf16_t const *b_enum, simsimd_size_t n,
                                          simsimd_distance_t *result) {
    simsimd_size_t i = 0;
    svfloat32_t d2_low_vec = svdupq_n_f32(0.f, 0.f, 0.f, 0.f);
    svfloat32_t d2_high_vec = svdupq_n_f32(0.f, 0.f, 0.f, 0.f);
    simsimd_u16_t const *a = (simsimd_u16_t const *)(a_enum);
    simsimd_u16_t const *b = (simsimd_u16_t const *)(b_enum);
    do {
        svbool_t pg_vec = svwhilelt_b16((unsigned int)i, (unsigned int)n);
        svuint16_t a_vec = svld1_u16(pg_vec, a + i);
        svuint16_t b_vec = svld1_u16(pg_vec, b + i);

        // There is no `bf16` subtraction in SVE, so we need to convert to `u32` and shift.
        svbool_t pg_low_vec = svwhilelt_b32((unsigned int)(i), (unsigned int)n);
        svbool_t pg_high_vec = svwhilelt_b32((unsigned int)(i + svcnth() / 2), (unsigned int)n);
        svfloat32_t a_low_vec = svreinterpret_f32_u32(svlsl_n_u32_x(pg_low_vec, svunpklo_u32(a_vec), 16));
        svfloat32_t a_high_vec = svreinterpret_f32_u32(svlsl_n_u32_x(pg_high_vec, svunpkhi_u32(a_vec), 16));
        svfloat32_t b_low_vec = svreinterpret_f32_u32(svlsl_n_u32_x(pg_low_vec, svunpklo_u32(b_vec), 16));
        svfloat32_t b_high_vec = svreinterpret_f32_u32(svlsl_n_u32_x(pg_high_vec, svunpkhi_u32(b_vec), 16));

        svfloat32_t a_minus_b_low_vec = svsub_f32_x(pg_low_vec, a_low_vec, b_low_vec);
        svfloat32_t a_minus_b_high_vec = svsub_f32_x(pg_high_vec, a_high_vec, b_high_vec);
        d2_low_vec = svmla_f32_x(pg_vec, d2_low_vec, a_minus_b_low_vec, a_minus_b_low_vec);
        d2_high_vec = svmla_f32_x(pg_vec, d2_high_vec, a_minus_b_high_vec, a_minus_b_high_vec);
        i += svcnth();
    } while (i < n);
    simsimd_f32_t d2 = svaddv_f32(svptrue_b32(), d2_low_vec) + svaddv_f32(svptrue_b32(), d2_high_vec);
    *result = d2;
}

SIMSIMD_PUBLIC void simsimd_cos_bf16_sve(simsimd_bf16_t const *a_enum, simsimd_bf16_t const *b_enum, simsimd_size_t n,
                                         simsimd_distance_t *result) {
    simsimd_size_t i = 0;
    svfloat32_t ab_vec = svdupq_n_f32(0.f, 0.f, 0.f, 0.f);
    svfloat32_t a2_vec = svdupq_n_f32(0.f, 0.f, 0.f, 0.f);
    svfloat32_t b2_vec = svdupq_n_f32(0.f, 0.f, 0.f, 0.f);
    simsimd_bf16_for_arm_simd_t const *a = (simsimd_bf16_for_arm_simd_t const *)(a_enum);
    simsimd_bf16_for_arm_simd_t const *b = (simsimd_bf16_for_arm_simd_t const *)(b_enum);
    do {
        svbool_t pg_vec = svwhilelt_b16((unsigned int)i, (unsigned int)n);
        svbfloat16_t a_vec = svld1_bf16(pg_vec, a + i);
        svbfloat16_t b_vec = svld1_bf16(pg_vec, b + i);
        ab_vec = svbfdot_f32(ab_vec, a_vec, b_vec);
        a2_vec = svbfdot_f32(a2_vec, a_vec, a_vec);
        b2_vec = svbfdot_f32(b2_vec, b_vec, b_vec);
        i += svcnth();
    } while (i < n);

    simsimd_f32_t ab = svaddv_f32(svptrue_b32(), ab_vec);
    simsimd_f32_t a2 = svaddv_f32(svptrue_b32(), a2_vec);
    simsimd_f32_t b2 = svaddv_f32(svptrue_b32(), b2_vec);
    *result = _simsimd_cos_normalize_f32_neon(ab, a2, b2);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_SVE_BF16
#endif // _SIMSIMD_TARGET_ARM

#if _SIMSIMD_TARGET_X86
#if SIMSIMD_TARGET_HASWELL
#pragma GCC push_options
#pragma GCC target("avx2")
#pragma clang attribute push(__attribute__((target("avx2"))), apply_to = function)

SIMSIMD_INTERNAL simsimd_f32_t _simsimd_sqrt_f32_haswell(simsimd_f32_t x) {
    return _mm_cvtss_f32(_mm_sqrt_ps(_mm_set_ss(x)));
}
SIMSIMD_INTERNAL simsimd_f64_t _simsimd_sqrt_f64_haswell(simsimd_f64_t x) {
    return _mm_cvtsd_f64(_mm_sqrt_pd(_mm_set_sd(x)));
}

SIMSIMD_INTERNAL simsimd_distance_t _simsimd_cos_normalize_f64_haswell(simsimd_f64_t ab, simsimd_f64_t a2,
                                                                       simsimd_f64_t b2) {

    // If both vectors have magnitude 0, the distance is 0.
    if (a2 == 0 && b2 == 0) return 0;
    // If any one of the vectors is 0, the square root of the product is 0,
    // the division is illformed, and the result is 1.
    else if (ab == 0)
        return 1;
    // We want to avoid the `simsimd_approximate_inverse_square_root` due to high latency:
    // https://web.archive.org/web/20210208132927/http://assemblyrequired.crashworks.org/timing-square-root/
    // The latency of the native instruction is 4 cycles and it's broadly supported.
    // For single-precision floats it has a maximum relative error of 1.5*2^-12.
    // Higher precision isn't implemented on older CPUs. See `_simsimd_cos_normalize_f64_skylake` for that.
    __m128d squares = _mm_set_pd(a2, b2);
    __m128d rsqrts = _mm_cvtps_pd(_mm_rsqrt_ps(_mm_cvtpd_ps(squares)));
    // Newton-Raphson iteration for reciprocal square root:
    // https://en.wikipedia.org/wiki/Newton%27s_method
    rsqrts = _mm_add_pd( //
        _mm_mul_pd(_mm_set1_pd(1.5), rsqrts),
        _mm_mul_pd(_mm_mul_pd(_mm_mul_pd(squares, _mm_set1_pd(-0.5)), rsqrts), _mm_mul_pd(rsqrts, rsqrts)));

    simsimd_f64_t a2_reciprocal = _mm_cvtsd_f64(_mm_unpackhi_pd(rsqrts, rsqrts));
    simsimd_f64_t b2_reciprocal = _mm_cvtsd_f64(rsqrts);
    simsimd_distance_t result = 1 - ab * a2_reciprocal * b2_reciprocal;
    return result > 0 ? result : 0;
}

SIMSIMD_INTERNAL simsimd_distance_t _simsimd_cos_normalize_f32_haswell(simsimd_f32_t ab, simsimd_f32_t a2,
                                                                       simsimd_f32_t b2) {

    // If both vectors have magnitude 0, the distance is 0.
    if (a2 == 0.0f && b2 == 0.0f) return 0.0f;
    // If any one of the vectors is 0, the square root of the product is 0,
    // the division is illformed, and the result is 1.
    else if (ab == 0.0f)
        return 1.0f;

    // Load the squares into an __m128 register for single-precision floating-point operations
    __m128 squares = _mm_set_ps(a2, b2, a2, b2); // We replicate to make use of full register

    // Compute the reciprocal square root of the squares using `_mm_rsqrt_ps` (single-precision)
    __m128 rsqrts = _mm_rsqrt_ps(squares);

    // Perform one iteration of Newton-Raphson refinement to improve the precision of rsqrt:
    // Formula: y' = y * (1.5 - 0.5 * x * y * y)
    __m128 half = _mm_set1_ps(0.5f);
    __m128 three_halves = _mm_set1_ps(1.5f);
    rsqrts =
        _mm_mul_ps(rsqrts, _mm_sub_ps(three_halves, _mm_mul_ps(half, _mm_mul_ps(squares, _mm_mul_ps(rsqrts, rsqrts)))));

    // Extract the reciprocal square roots of a2 and b2 from the __m128 register
    simsimd_f32_t a2_reciprocal = _mm_cvtss_f32(_mm_shuffle_ps(rsqrts, rsqrts, _MM_SHUFFLE(0, 0, 0, 1)));
    simsimd_f32_t b2_reciprocal = _mm_cvtss_f32(rsqrts);

    // Calculate the cosine distance: 1 - ab * a2_reciprocal * b2_reciprocal
    simsimd_distance_t result = 1.0f - ab * a2_reciprocal * b2_reciprocal;
    return result > 0 ? result : 0;
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_HASWELL
#endif // _SIMSIMD_TARGET_X86

#if _SIMSIMD_TARGET_X86
#if SIMSIMD_TARGET_HASWELL
#pragma GCC push_options
#pragma GCC target("avx2", "f16c", "fma")
#pragma clang attribute push(__attribute__((target("avx2,f16c,fma"))), apply_to = function)

SIMSIMD_PUBLIC void simsimd_l2_f16_haswell(simsimd_f16_t const *a, simsimd_f16_t const *b, simsimd_size_t n,
                                           simsimd_distance_t *result) {
    simsimd_l2sq_f16_haswell(a, b, n, result);
    *result = _simsimd_sqrt_f32_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_f16_haswell(simsimd_f16_t const *a, simsimd_f16_t const *b, simsimd_size_t n,
                                             simsimd_distance_t *result) {
    __m256 a_vec, b_vec;
    __m256 d2_vec = _mm256_setzero_ps();

simsimd_l2sq_f16_haswell_cycle:
    if (n < 8) {
        a_vec = _simsimd_partial_load_f16x8_haswell(a, n);
        b_vec = _simsimd_partial_load_f16x8_haswell(b, n);
        n = 0;
    }
    else {
        a_vec = _mm256_cvtph_ps(_mm_lddqu_si128((__m128i const *)a));
        b_vec = _mm256_cvtph_ps(_mm_lddqu_si128((__m128i const *)b));
        n -= 8, a += 8, b += 8;
    }
    __m256 d_vec = _mm256_sub_ps(a_vec, b_vec);
    d2_vec = _mm256_fmadd_ps(d_vec, d_vec, d2_vec);
    if (n) goto simsimd_l2sq_f16_haswell_cycle;

    *result = _simsimd_reduce_f32x8_haswell(d2_vec);
}

SIMSIMD_PUBLIC void simsimd_cos_f16_haswell(simsimd_f16_t const *a, simsimd_f16_t const *b, simsimd_size_t n,
                                            simsimd_distance_t *result) {
    __m256 a_vec, b_vec;
    __m256 ab_vec = _mm256_setzero_ps(), a2_vec = _mm256_setzero_ps(), b2_vec = _mm256_setzero_ps();

simsimd_cos_f16_haswell_cycle:
    if (n < 8) {
        a_vec = _simsimd_partial_load_f16x8_haswell(a, n);
        b_vec = _simsimd_partial_load_f16x8_haswell(b, n);
        n = 0;
    }
    else {
        a_vec = _mm256_cvtph_ps(_mm_lddqu_si128((__m128i const *)a));
        b_vec = _mm256_cvtph_ps(_mm_lddqu_si128((__m128i const *)b));
        n -= 8, a += 8, b += 8;
    }
    ab_vec = _mm256_fmadd_ps(a_vec, b_vec, ab_vec);
    a2_vec = _mm256_fmadd_ps(a_vec, a_vec, a2_vec);
    b2_vec = _mm256_fmadd_ps(b_vec, b_vec, b2_vec);
    if (n) goto simsimd_cos_f16_haswell_cycle;

    simsimd_f32_t ab = _simsimd_reduce_f32x8_haswell(ab_vec);
    simsimd_f32_t a2 = _simsimd_reduce_f32x8_haswell(a2_vec);
    simsimd_f32_t b2 = _simsimd_reduce_f32x8_haswell(b2_vec);
    *result = _simsimd_cos_normalize_f32_haswell(ab, a2, b2);
}

SIMSIMD_PUBLIC void simsimd_l2_bf16_haswell(simsimd_bf16_t const *a, simsimd_bf16_t const *b, simsimd_size_t n,
                                            simsimd_distance_t *result) {
    simsimd_l2sq_bf16_haswell(a, b, n, result);
    *result = _simsimd_sqrt_f32_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_bf16_haswell(simsimd_bf16_t const *a, simsimd_bf16_t const *b, simsimd_size_t n,
                                              simsimd_distance_t *result) {
    __m256 a_vec, b_vec;
    __m256 d2_vec = _mm256_setzero_ps();

simsimd_l2sq_bf16_haswell_cycle:
    if (n < 8) {
        a_vec = _simsimd_bf16x8_to_f32x8_haswell(_simsimd_partial_load_bf16x8_haswell(a, n));
        b_vec = _simsimd_bf16x8_to_f32x8_haswell(_simsimd_partial_load_bf16x8_haswell(b, n));
        n = 0;
    }
    else {
        a_vec = _simsimd_bf16x8_to_f32x8_haswell(_mm_lddqu_si128((__m128i const *)a));
        b_vec = _simsimd_bf16x8_to_f32x8_haswell(_mm_lddqu_si128((__m128i const *)b));
        n -= 8, a += 8, b += 8;
    }
    __m256 d_vec = _mm256_sub_ps(a_vec, b_vec);
    d2_vec = _mm256_fmadd_ps(d_vec, d_vec, d2_vec);
    if (n) goto simsimd_l2sq_bf16_haswell_cycle;

    *result = _simsimd_reduce_f32x8_haswell(d2_vec);
}

SIMSIMD_PUBLIC void simsimd_cos_bf16_haswell(simsimd_bf16_t const *a, simsimd_bf16_t const *b, simsimd_size_t n,
                                             simsimd_distance_t *result) {
    __m256 a_vec, b_vec;
    __m256 ab_vec = _mm256_setzero_ps(), a2_vec = _mm256_setzero_ps(), b2_vec = _mm256_setzero_ps();

simsimd_cos_bf16_haswell_cycle:
    if (n < 8) {
        a_vec = _simsimd_bf16x8_to_f32x8_haswell(_simsimd_partial_load_bf16x8_haswell(a, n));
        b_vec = _simsimd_bf16x8_to_f32x8_haswell(_simsimd_partial_load_bf16x8_haswell(b, n));
        n = 0;
    }
    else {
        a_vec = _simsimd_bf16x8_to_f32x8_haswell(_mm_lddqu_si128((__m128i const *)a));
        b_vec = _simsimd_bf16x8_to_f32x8_haswell(_mm_lddqu_si128((__m128i const *)b));
        n -= 8, a += 8, b += 8;
    }
    ab_vec = _mm256_fmadd_ps(a_vec, b_vec, ab_vec);
    a2_vec = _mm256_fmadd_ps(a_vec, a_vec, a2_vec);
    b2_vec = _mm256_fmadd_ps(b_vec, b_vec, b2_vec);
    if (n) goto simsimd_cos_bf16_haswell_cycle;

    simsimd_f32_t ab = _simsimd_reduce_f32x8_haswell(ab_vec);
    simsimd_f32_t a2 = _simsimd_reduce_f32x8_haswell(a2_vec);
    simsimd_f32_t b2 = _simsimd_reduce_f32x8_haswell(b2_vec);
    *result = _simsimd_cos_normalize_f32_haswell(ab, a2, b2);
}

SIMSIMD_PUBLIC void simsimd_l2_i8_haswell(simsimd_i8_t const *a, simsimd_i8_t const *b, simsimd_size_t n,
                                          simsimd_distance_t *result) {
    simsimd_l2sq_i8_haswell(a, b, n, result);
    *result = _simsimd_sqrt_f32_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_i8_haswell(simsimd_i8_t const *a, simsimd_i8_t const *b, simsimd_size_t n,
                                            simsimd_distance_t *result) {

    __m256i d2_i32_low_vec = _mm256_setzero_si256();
    __m256i d2_i32_high_vec = _mm256_setzero_si256();

    simsimd_size_t i = 0;
    for (; i + 32 <= n; i += 32) {
        __m256i a_i8_vec = _mm256_lddqu_si256((__m256i const *)(a + i));
        __m256i b_i8_vec = _mm256_lddqu_si256((__m256i const *)(b + i));

        // Sign extend `i8` to `i16`
        __m256i a_i16_low_vec = _mm256_cvtepi8_epi16(_mm256_castsi256_si128(a_i8_vec));
        __m256i a_i16_high_vec = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(a_i8_vec, 1));
        __m256i b_i16_low_vec = _mm256_cvtepi8_epi16(_mm256_castsi256_si128(b_i8_vec));
        __m256i b_i16_high_vec = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(b_i8_vec, 1));

        // Subtract
        // After this we will be squaring the values. The sign will be dropped
        // and each difference will be in the range [0, 255].
        __m256i d_i16_low_vec = _mm256_sub_epi16(a_i16_low_vec, b_i16_low_vec);
        __m256i d_i16_high_vec = _mm256_sub_epi16(a_i16_high_vec, b_i16_high_vec);

        // Accumulate into `i32` vectors
        d2_i32_low_vec = _mm256_add_epi32(d2_i32_low_vec, _mm256_madd_epi16(d_i16_low_vec, d_i16_low_vec));
        d2_i32_high_vec = _mm256_add_epi32(d2_i32_high_vec, _mm256_madd_epi16(d_i16_high_vec, d_i16_high_vec));
    }

    // Accumulate the 32-bit integers from `d2_i32_high_vec` and `d2_i32_low_vec`
    int d2 = _simsimd_reduce_i32x8_haswell(_mm256_add_epi32(d2_i32_low_vec, d2_i32_high_vec));

    // Take care of the tail:
    for (; i < n; ++i) {
        int n = (int)(a[i]) - b[i];
        d2 += n * n;
    }

    *result = (simsimd_f64_t)d2;
}

SIMSIMD_PUBLIC void simsimd_cos_i8_haswell(simsimd_i8_t const *a, simsimd_i8_t const *b, simsimd_size_t n,
                                           simsimd_distance_t *result) {

    __m256i ab_i32_low_vec = _mm256_setzero_si256();
    __m256i ab_i32_high_vec = _mm256_setzero_si256();
    __m256i a2_i32_low_vec = _mm256_setzero_si256();
    __m256i a2_i32_high_vec = _mm256_setzero_si256();
    __m256i b2_i32_low_vec = _mm256_setzero_si256();
    __m256i b2_i32_high_vec = _mm256_setzero_si256();

    // AVX2 has no instructions for 8-bit signed integer dot-products,
    // but it has a weird instruction for mixed signed-unsigned 8-bit dot-product.
    // So we need to normalize the first vector to its absolute value,
    // and shift the product sign into the second vector.
    //
    //      __m256i a_i8_abs_vec = _mm256_abs_epi8(a_i8_vec);
    //      __m256i b_i8_flipped_vec = _mm256_sign_epi8(b_i8_vec, a_i8_vec);
    //      __m256i ab_i16_vec = _mm256_maddubs_epi16(a_i8_abs_vec, b_i8_flipped_vec);
    //
    // The problem with this approach, however, is the `-128` value in the second vector.
    // Flipping its sign will do nothing, and the result will be incorrect.
    // This can easily lead to noticeable numerical errors in the final result.
    simsimd_size_t i = 0;
    for (; i + 32 <= n; i += 32) {
        __m256i a_i8_vec = _mm256_lddqu_si256((__m256i const *)(a + i));
        __m256i b_i8_vec = _mm256_lddqu_si256((__m256i const *)(b + i));

        // Unpack `int8` to `int16`
        __m256i a_i16_low_vec = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(a_i8_vec, 0));
        __m256i a_i16_high_vec = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(a_i8_vec, 1));
        __m256i b_i16_low_vec = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(b_i8_vec, 0));
        __m256i b_i16_high_vec = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(b_i8_vec, 1));

        // Multiply and accumulate as `int16`, accumulate products as `int32`:
        ab_i32_low_vec = _mm256_add_epi32(ab_i32_low_vec, _mm256_madd_epi16(a_i16_low_vec, b_i16_low_vec));
        ab_i32_high_vec = _mm256_add_epi32(ab_i32_high_vec, _mm256_madd_epi16(a_i16_high_vec, b_i16_high_vec));
        a2_i32_low_vec = _mm256_add_epi32(a2_i32_low_vec, _mm256_madd_epi16(a_i16_low_vec, a_i16_low_vec));
        a2_i32_high_vec = _mm256_add_epi32(a2_i32_high_vec, _mm256_madd_epi16(a_i16_high_vec, a_i16_high_vec));
        b2_i32_low_vec = _mm256_add_epi32(b2_i32_low_vec, _mm256_madd_epi16(b_i16_low_vec, b_i16_low_vec));
        b2_i32_high_vec = _mm256_add_epi32(b2_i32_high_vec, _mm256_madd_epi16(b_i16_high_vec, b_i16_high_vec));
    }

    // Further reduce to a single sum for each vector
    int ab = _simsimd_reduce_i32x8_haswell(_mm256_add_epi32(ab_i32_low_vec, ab_i32_high_vec));
    int a2 = _simsimd_reduce_i32x8_haswell(_mm256_add_epi32(a2_i32_low_vec, a2_i32_high_vec));
    int b2 = _simsimd_reduce_i32x8_haswell(_mm256_add_epi32(b2_i32_low_vec, b2_i32_high_vec));

    // Take care of the tail:
    for (; i < n; ++i) {
        int ai = a[i], bi = b[i];
        ab += ai * bi, a2 += ai * ai, b2 += bi * bi;
    }

    *result = _simsimd_cos_normalize_f32_haswell(ab, a2, b2);
}

SIMSIMD_PUBLIC void simsimd_l2_u8_haswell(simsimd_u8_t const *a, simsimd_u8_t const *b, simsimd_size_t n,
                                          simsimd_distance_t *result) {
    simsimd_l2sq_u8_haswell(a, b, n, result);
    *result = _simsimd_sqrt_f32_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_u8_haswell(simsimd_u8_t const *a, simsimd_u8_t const *b, simsimd_size_t n,
                                            simsimd_distance_t *result) {

    __m256i d2_i32_low_vec = _mm256_setzero_si256();
    __m256i d2_i32_high_vec = _mm256_setzero_si256();
    __m256i const zeros_vec = _mm256_setzero_si256();

    simsimd_size_t i = 0;
    for (; i + 32 <= n; i += 32) {
        __m256i a_u8_vec = _mm256_lddqu_si256((__m256i const *)(a + i));
        __m256i b_u8_vec = _mm256_lddqu_si256((__m256i const *)(b + i));

        // Substracting unsigned vectors in AVX2 is done by saturating subtraction:
        __m256i d_u8_vec = _mm256_or_si256(_mm256_subs_epu8(a_u8_vec, b_u8_vec), _mm256_subs_epu8(b_u8_vec, a_u8_vec));

        // Upcast `uint8` to `int16`. Unlike the signed version, we can use the unpacking
        // instructions instead of extracts, as they are much faster and more efficient.
        __m256i d_i16_low_vec = _mm256_unpacklo_epi8(d_u8_vec, zeros_vec);
        __m256i d_i16_high_vec = _mm256_unpackhi_epi8(d_u8_vec, zeros_vec);

        // Multiply and accumulate at `int16` level, accumulate at `int32` level:
        d2_i32_low_vec = _mm256_add_epi32(d2_i32_low_vec, _mm256_madd_epi16(d_i16_low_vec, d_i16_low_vec));
        d2_i32_high_vec = _mm256_add_epi32(d2_i32_high_vec, _mm256_madd_epi16(d_i16_high_vec, d_i16_high_vec));
    }

    // Accumulate the 32-bit integers from `d2_i32_high_vec` and `d2_i32_low_vec`
    int d2 = _simsimd_reduce_i32x8_haswell(_mm256_add_epi32(d2_i32_low_vec, d2_i32_high_vec));

    // Take care of the tail:
    for (; i < n; ++i) {
        int n = (int)(a[i]) - b[i];
        d2 += n * n;
    }

    *result = (simsimd_f64_t)d2;
}

SIMSIMD_PUBLIC void simsimd_cos_u8_haswell(simsimd_u8_t const *a, simsimd_u8_t const *b, simsimd_size_t n,
                                           simsimd_distance_t *result) {

    __m256i ab_i32_low_vec = _mm256_setzero_si256();
    __m256i ab_i32_high_vec = _mm256_setzero_si256();
    __m256i a2_i32_low_vec = _mm256_setzero_si256();
    __m256i a2_i32_high_vec = _mm256_setzero_si256();
    __m256i b2_i32_low_vec = _mm256_setzero_si256();
    __m256i b2_i32_high_vec = _mm256_setzero_si256();
    __m256i const zeros_vec = _mm256_setzero_si256();

    // AVX2 has no instructions for 8-bit signed integer dot-products,
    // but it has a weird instruction for mixed signed-unsigned 8-bit dot-product.
    // So we need to normalize the first vector to its absolute value,
    // and shift the product sign into the second vector.
    //
    //      __m256i a_i8_abs_vec = _mm256_abs_epi8(a_i8_vec);
    //      __m256i b_i8_flipped_vec = _mm256_sign_epi8(b_i8_vec, a_i8_vec);
    //      __m256i ab_i16_vec = _mm256_maddubs_epi16(a_i8_abs_vec, b_i8_flipped_vec);
    //
    // The problem with this approach, however, is the `-128` value in the second vector.
    // Flipping its sign will do nothing, and the result will be incorrect.
    // This can easily lead to noticeable numerical errors in the final result.
    simsimd_size_t i = 0;
    for (; i + 32 <= n; i += 32) {
        __m256i a_u8_vec = _mm256_lddqu_si256((__m256i const *)(a + i));
        __m256i b_u8_vec = _mm256_lddqu_si256((__m256i const *)(b + i));

        // Upcast `uint8` to `int16`. Unlike the signed version, we can use the unpacking
        // instructions instead of extracts, as they are much faster and more efficient.
        __m256i a_i16_low_vec = _mm256_unpacklo_epi8(a_u8_vec, zeros_vec);
        __m256i a_i16_high_vec = _mm256_unpackhi_epi8(a_u8_vec, zeros_vec);
        __m256i b_i16_low_vec = _mm256_unpacklo_epi8(b_u8_vec, zeros_vec);
        __m256i b_i16_high_vec = _mm256_unpackhi_epi8(b_u8_vec, zeros_vec);

        // Multiply and accumulate as `int16`, accumulate products as `int32`
        ab_i32_low_vec = _mm256_add_epi32(ab_i32_low_vec, _mm256_madd_epi16(a_i16_low_vec, b_i16_low_vec));
        ab_i32_high_vec = _mm256_add_epi32(ab_i32_high_vec, _mm256_madd_epi16(a_i16_high_vec, b_i16_high_vec));
        a2_i32_low_vec = _mm256_add_epi32(a2_i32_low_vec, _mm256_madd_epi16(a_i16_low_vec, a_i16_low_vec));
        a2_i32_high_vec = _mm256_add_epi32(a2_i32_high_vec, _mm256_madd_epi16(a_i16_high_vec, a_i16_high_vec));
        b2_i32_low_vec = _mm256_add_epi32(b2_i32_low_vec, _mm256_madd_epi16(b_i16_low_vec, b_i16_low_vec));
        b2_i32_high_vec = _mm256_add_epi32(b2_i32_high_vec, _mm256_madd_epi16(b_i16_high_vec, b_i16_high_vec));
    }

    // Further reduce to a single sum for each vector
    int ab = _simsimd_reduce_i32x8_haswell(_mm256_add_epi32(ab_i32_low_vec, ab_i32_high_vec));
    int a2 = _simsimd_reduce_i32x8_haswell(_mm256_add_epi32(a2_i32_low_vec, a2_i32_high_vec));
    int b2 = _simsimd_reduce_i32x8_haswell(_mm256_add_epi32(b2_i32_low_vec, b2_i32_high_vec));

    // Take care of the tail:
    for (; i < n; ++i) {
        int ai = a[i], bi = b[i];
        ab += ai * bi, a2 += ai * ai, b2 += bi * bi;
    }

    *result = _simsimd_cos_normalize_f32_haswell(ab, a2, b2);
}

SIMSIMD_PUBLIC void simsimd_l2_f32_haswell(simsimd_f32_t const *a, simsimd_f32_t const *b, simsimd_size_t n,
                                           simsimd_distance_t *result) {
    simsimd_l2sq_f32_haswell(a, b, n, result);
    *result = _simsimd_sqrt_f32_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_f32_haswell(simsimd_f32_t const *a, simsimd_f32_t const *b, simsimd_size_t n,
                                             simsimd_distance_t *result) {

    __m256 d2_vec = _mm256_setzero_ps();
    simsimd_size_t i = 0;
    for (; i + 8 <= n; i += 8) {
        __m256 a_vec = _mm256_loadu_ps(a + i);
        __m256 b_vec = _mm256_loadu_ps(b + i);
        __m256 d_vec = _mm256_sub_ps(a_vec, b_vec);
        d2_vec = _mm256_fmadd_ps(d_vec, d_vec, d2_vec);
    }

    simsimd_f64_t d2 = _simsimd_reduce_f32x8_haswell(d2_vec);
    for (; i < n; ++i) {
        float d = a[i] - b[i];
        d2 += d * d;
    }

    *result = d2;
}

SIMSIMD_PUBLIC void simsimd_cos_f32_haswell(simsimd_f32_t const *a, simsimd_f32_t const *b, simsimd_size_t n,
                                            simsimd_distance_t *result) {

    __m256 ab_vec = _mm256_setzero_ps();
    __m256 a2_vec = _mm256_setzero_ps();
    __m256 b2_vec = _mm256_setzero_ps();
    simsimd_size_t i = 0;
    for (; i + 8 <= n; i += 8) {
        __m256 a_vec = _mm256_loadu_ps(a + i);
        __m256 b_vec = _mm256_loadu_ps(b + i);
        ab_vec = _mm256_fmadd_ps(a_vec, b_vec, ab_vec);
        a2_vec = _mm256_fmadd_ps(a_vec, a_vec, a2_vec);
        b2_vec = _mm256_fmadd_ps(b_vec, b_vec, b2_vec);
    }

    simsimd_f64_t ab = _simsimd_reduce_f32x8_haswell(ab_vec);
    simsimd_f64_t a2 = _simsimd_reduce_f32x8_haswell(a2_vec);
    simsimd_f64_t b2 = _simsimd_reduce_f32x8_haswell(b2_vec);
    for (; i < n; ++i) {
        float ai = a[i], bi = b[i];
        ab += ai * bi, a2 += ai * ai, b2 += bi * bi;
    }
    *result = _simsimd_cos_normalize_f64_haswell(ab, a2, b2);
}

SIMSIMD_PUBLIC void simsimd_l2_f64_haswell(simsimd_f64_t const *a, simsimd_f64_t const *b, simsimd_size_t n,
                                           simsimd_distance_t *result) {
    simsimd_l2sq_f64_haswell(a, b, n, result);
    *result = _simsimd_sqrt_f64_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_f64_haswell(simsimd_f64_t const *a, simsimd_f64_t const *b, simsimd_size_t n,
                                             simsimd_distance_t *result) {

    __m256d d2_vec = _mm256_setzero_pd();
    simsimd_size_t i = 0;
    for (; i + 4 <= n; i += 4) {
        __m256d a_vec = _mm256_loadu_pd(a + i);
        __m256d b_vec = _mm256_loadu_pd(b + i);
        __m256d d_vec = _mm256_sub_pd(a_vec, b_vec);
        d2_vec = _mm256_fmadd_pd(d_vec, d_vec, d2_vec);
    }

    simsimd_f64_t d2 = _simsimd_reduce_f64x4_haswell(d2_vec);
    for (; i < n; ++i) {
        simsimd_f64_t d = a[i] - b[i];
        d2 += d * d;
    }

    *result = d2;
}

SIMSIMD_PUBLIC void simsimd_cos_f64_haswell(simsimd_f64_t const *a, simsimd_f64_t const *b, simsimd_size_t n,
                                            simsimd_distance_t *result) {

    __m256d ab_vec = _mm256_setzero_pd();
    __m256d a2_vec = _mm256_setzero_pd();
    __m256d b2_vec = _mm256_setzero_pd();
    simsimd_size_t i = 0;
    for (; i + 4 <= n; i += 4) {
        __m256d a_vec = _mm256_loadu_pd(a + i);
        __m256d b_vec = _mm256_loadu_pd(b + i);
        ab_vec = _mm256_fmadd_pd(a_vec, b_vec, ab_vec);
        a2_vec = _mm256_fmadd_pd(a_vec, a_vec, a2_vec);
        b2_vec = _mm256_fmadd_pd(b_vec, b_vec, b2_vec);
    }

    simsimd_f64_t ab = _simsimd_reduce_f64x4_haswell(ab_vec);
    simsimd_f64_t a2 = _simsimd_reduce_f64x4_haswell(a2_vec);
    simsimd_f64_t b2 = _simsimd_reduce_f64x4_haswell(b2_vec);
    for (; i < n; ++i) {
        simsimd_f64_t ai = a[i], bi = b[i];
        ab += ai * bi, a2 += ai * ai, b2 += bi * bi;
    }
    *result = _simsimd_cos_normalize_f64_haswell(ab, a2, b2);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_HASWELL

#if SIMSIMD_TARGET_SKYLAKE
#pragma GCC push_options
#pragma GCC target("avx2", "avx512f", "avx512bw", "avx512vl", "bmi2")
#pragma clang attribute push(__attribute__((target("avx2,avx512f,avx512bw,avx512vl,bmi2"))), apply_to = function)

SIMSIMD_PUBLIC void simsimd_l2_f32_skylake(simsimd_f32_t const *a, simsimd_f32_t const *b, simsimd_size_t n,
                                           simsimd_distance_t *result) {
    simsimd_l2sq_f32_skylake(a, b, n, result);
    *result = _simsimd_sqrt_f64_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_f32_skylake(simsimd_f32_t const *a, simsimd_f32_t const *b, simsimd_size_t n,
                                             simsimd_distance_t *result) {
    __m512 d2_vec = _mm512_setzero();
    __m512 a_vec, b_vec;

simsimd_l2sq_f32_skylake_cycle:
    if (n < 16) {
        __mmask16 mask = (__mmask16)_bzhi_u32(0xFFFFFFFF, n);
        a_vec = _mm512_maskz_loadu_ps(mask, a);
        b_vec = _mm512_maskz_loadu_ps(mask, b);
        n = 0;
    }
    else {
        a_vec = _mm512_loadu_ps(a);
        b_vec = _mm512_loadu_ps(b);
        a += 16, b += 16, n -= 16;
    }
    __m512 d_vec = _mm512_sub_ps(a_vec, b_vec);
    d2_vec = _mm512_fmadd_ps(d_vec, d_vec, d2_vec);
    if (n) goto simsimd_l2sq_f32_skylake_cycle;

    *result = _simsimd_reduce_f32x16_skylake(d2_vec);
}

SIMSIMD_INTERNAL simsimd_distance_t _simsimd_cos_normalize_f64_skylake(simsimd_f64_t ab, simsimd_f64_t a2,
                                                                       simsimd_f64_t b2) {

    // If both vectors have magnitude 0, the distance is 0.
    if (a2 == 0 && b2 == 0) return 0;
    // If any one of the vectors is 0, the square root of the product is 0,
    // the division is illformed, and the result is 1.
    else if (ab == 0)
        return 1;

    // We want to avoid the `simsimd_approximate_inverse_square_root` due to high latency:
    // https://web.archive.org/web/20210208132927/http://assemblyrequired.crashworks.org/timing-square-root/
    // The maximum relative error for this approximation is less than 2^-14, which is 6x lower than
    // for single-precision floats in the `_simsimd_cos_normalize_f64_haswell` implementation.
    // Mysteriously, MSVC has no `_mm_rsqrt14_pd` intrinsic, but has its masked variants,
    // so let's use `_mm_maskz_rsqrt14_pd(0xFF, ...)` instead.
    __m128d squares = _mm_set_pd(a2, b2);
    __m128d rsqrts = _mm_maskz_rsqrt14_pd(0xFF, squares);

    // Let's implement a single Newton-Raphson iteration to refine the result.
    // This is how it affects downstream applications:
    //
    // +--------+------+----------+---------------------+---------------------+---------------------+
    // | Metric | NDim |  DType   |   Baseline Error    |  Old SimSIMD Error  |  New SimSIMD Error  |
    // +--------+------+----------+---------------------+---------------------+---------------------+
    // | cosine | 1536 | bfloat16 | 1.89e-08 ± 1.59e-08 | 3.07e-07 ± 3.09e-07 | 3.53e-09 ± 2.70e-09 |
    // | cosine | 1536 | float16  | 1.67e-02 ± 1.44e-02 | 2.68e-05 ± 1.95e-05 | 2.02e-05 ± 1.39e-05 |
    // | cosine | 1536 | float32  | 2.21e-08 ± 1.65e-08 | 3.47e-07 ± 3.49e-07 | 3.77e-09 ± 2.84e-09 |
    // | cosine | 1536 | float64  | 0.00e+00 ± 0.00e+00 | 3.80e-07 ± 4.50e-07 | 1.35e-11 ± 1.85e-11 |
    // | cosine | 1536 |   int8   | 0.00e+00 ± 0.00e+00 | 4.60e-04 ± 3.36e-04 | 4.20e-04 ± 4.88e-04 |
    // +--------+------+----------+---------------------+---------------------+---------------------+
    //
    // https://en.wikipedia.org/wiki/Newton%27s_method
    rsqrts = _mm_add_pd( //
        _mm_mul_pd(_mm_set1_pd(1.5), rsqrts),
        _mm_mul_pd(_mm_mul_pd(_mm_mul_pd(squares, _mm_set1_pd(-0.5)), rsqrts), _mm_mul_pd(rsqrts, rsqrts)));

    simsimd_f64_t a2_reciprocal = _mm_cvtsd_f64(_mm_unpackhi_pd(rsqrts, rsqrts));
    simsimd_f64_t b2_reciprocal = _mm_cvtsd_f64(rsqrts);
    simsimd_distance_t result = 1 - ab * a2_reciprocal * b2_reciprocal;
    return result > 0 ? result : 0;
}

SIMSIMD_PUBLIC void simsimd_cos_f32_skylake(simsimd_f32_t const *a, simsimd_f32_t const *b, simsimd_size_t n,
                                            simsimd_distance_t *result) {
    __m512 ab_vec = _mm512_setzero();
    __m512 a2_vec = _mm512_setzero();
    __m512 b2_vec = _mm512_setzero();
    __m512 a_vec, b_vec;

simsimd_cos_f32_skylake_cycle:
    if (n < 16) {
        __mmask16 mask = (__mmask16)_bzhi_u32(0xFFFFFFFF, n);
        a_vec = _mm512_maskz_loadu_ps(mask, a);
        b_vec = _mm512_maskz_loadu_ps(mask, b);
        n = 0;
    }
    else {
        a_vec = _mm512_loadu_ps(a);
        b_vec = _mm512_loadu_ps(b);
        a += 16, b += 16, n -= 16;
    }
    ab_vec = _mm512_fmadd_ps(a_vec, b_vec, ab_vec);
    a2_vec = _mm512_fmadd_ps(a_vec, a_vec, a2_vec);
    b2_vec = _mm512_fmadd_ps(b_vec, b_vec, b2_vec);
    if (n) goto simsimd_cos_f32_skylake_cycle;

    simsimd_f64_t ab = _simsimd_reduce_f32x16_skylake(ab_vec);
    simsimd_f64_t a2 = _simsimd_reduce_f32x16_skylake(a2_vec);
    simsimd_f64_t b2 = _simsimd_reduce_f32x16_skylake(b2_vec);
    *result = _simsimd_cos_normalize_f64_skylake(ab, a2, b2);
}

SIMSIMD_PUBLIC void simsimd_l2_f64_skylake(simsimd_f64_t const *a, simsimd_f64_t const *b, simsimd_size_t n,
                                           simsimd_distance_t *result) {
    simsimd_l2sq_f64_skylake(a, b, n, result);
    *result = _simsimd_sqrt_f64_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_f64_skylake(simsimd_f64_t const *a, simsimd_f64_t const *b, simsimd_size_t n,
                                             simsimd_distance_t *result) {
    __m512d d2_vec = _mm512_setzero_pd();
    __m512d a_vec, b_vec;

simsimd_l2sq_f64_skylake_cycle:
    if (n < 8) {
        __mmask8 mask = (__mmask8)_bzhi_u32(0xFFFFFFFF, n);
        a_vec = _mm512_maskz_loadu_pd(mask, a);
        b_vec = _mm512_maskz_loadu_pd(mask, b);
        n = 0;
    }
    else {
        a_vec = _mm512_loadu_pd(a);
        b_vec = _mm512_loadu_pd(b);
        a += 8, b += 8, n -= 8;
    }
    __m512d d_vec = _mm512_sub_pd(a_vec, b_vec);
    d2_vec = _mm512_fmadd_pd(d_vec, d_vec, d2_vec);
    if (n) goto simsimd_l2sq_f64_skylake_cycle;

    *result = _mm512_reduce_add_pd(d2_vec);
}

SIMSIMD_PUBLIC void simsimd_cos_f64_skylake(simsimd_f64_t const *a, simsimd_f64_t const *b, simsimd_size_t n,
                                            simsimd_distance_t *result) {
    __m512d ab_vec = _mm512_setzero_pd();
    __m512d a2_vec = _mm512_setzero_pd();
    __m512d b2_vec = _mm512_setzero_pd();
    __m512d a_vec, b_vec;

simsimd_cos_f64_skylake_cycle:
    if (n < 8) {
        __mmask8 mask = (__mmask8)_bzhi_u32(0xFFFFFFFF, n);
        a_vec = _mm512_maskz_loadu_pd(mask, a);
        b_vec = _mm512_maskz_loadu_pd(mask, b);
        n = 0;
    }
    else {
        a_vec = _mm512_loadu_pd(a);
        b_vec = _mm512_loadu_pd(b);
        a += 8, b += 8, n -= 8;
    }
    ab_vec = _mm512_fmadd_pd(a_vec, b_vec, ab_vec);
    a2_vec = _mm512_fmadd_pd(a_vec, a_vec, a2_vec);
    b2_vec = _mm512_fmadd_pd(b_vec, b_vec, b2_vec);
    if (n) goto simsimd_cos_f64_skylake_cycle;

    simsimd_f64_t ab = _mm512_reduce_add_pd(ab_vec);
    simsimd_f64_t a2 = _mm512_reduce_add_pd(a2_vec);
    simsimd_f64_t b2 = _mm512_reduce_add_pd(b2_vec);
    *result = _simsimd_cos_normalize_f64_skylake(ab, a2, b2);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_SKYLAKE

#if SIMSIMD_TARGET_GENOA
#pragma GCC push_options
#pragma GCC target("avx2", "avx512f", "avx512vl", "bmi2", "avx512bw", "avx512bf16")
#pragma clang attribute push(__attribute__((target("avx2,avx512f,avx512vl,bmi2,avx512bw,avx512bf16"))), \
                             apply_to = function)

SIMSIMD_INTERNAL __m512i _simsimd_substract_bf16x32_genoa(__m512i a_i16, __m512i b_i16) {

    union {
        __m512 fvec;
        __m512i ivec;
        simsimd_f32_t f32[16];
        simsimd_u16_t u16[32];
        simsimd_bf16_t bf16[32];
    } d_odd, d_even, d, a_f32_even, b_f32_even, d_f32_even, a_f32_odd, b_f32_odd, d_f32_odd, a, b;
    a.ivec = a_i16;
    b.ivec = b_i16;

    // There are several approaches to perform subtraction in `bf16`. The first one is:
    //
    //      Perform a couple of casts - each is a bitshift. To convert `bf16` to `f32`,
    //      expand it to 32-bit integers, then shift the bits by 16 to the left.
    //      Then subtract as floats, and shift back. During expansion, we will double the space,
    //      and should use separate registers for top and bottom halves.
    //      Some compilers don't have `_mm512_extracti32x8_epi32`, so we use `_mm512_extracti64x4_epi64`:
    //
    //          a_f32_bot.fvec = _mm512_castsi512_ps(_mm512_slli_epi32(
    //              _mm512_cvtepu16_epi32(_mm512_castsi512_si256(a_i16)), 16));
    //          b_f32_bot.fvec = _mm512_castsi512_ps(_mm512_slli_epi32(
    //              _mm512_cvtepu16_epi32(_mm512_castsi512_si256(b_i16)), 16));
    //          a_f32_top.fvec =_mm512_castsi512_ps(
    //              _mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm512_extracti64x4_epi64(a_i16, 1)), 16));
    //          b_f32_top.fvec =_mm512_castsi512_ps(
    //              _mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm512_extracti64x4_epi64(b_i16, 1)), 16));
    //          d_f32_top.fvec = _mm512_sub_ps(a_f32_top.fvec, b_f32_top.fvec);
    //          d_f32_bot.fvec = _mm512_sub_ps(a_f32_bot.fvec, b_f32_bot.fvec);
    //          d.ivec = _mm512_castsi256_si512(_mm512_cvtepi32_epi16(
    //              _mm512_srli_epi32(_mm512_castps_si512(d_f32_bot.fvec), 16)));
    //          d.ivec = _mm512_inserti64x4(d.ivec, _mm512_cvtepi32_epi16(
    //              _mm512_srli_epi32(_mm512_castps_si512(d_f32_top.fvec), 16)), 1);
    //
    // Instead of using multple shifts and an insertion, we can achieve similar result with fewer expensive
    // calls to `_mm512_permutex2var_epi16`, or a cheap `_mm512_mask_shuffle_epi8` and blend:
    //
    a_f32_odd.ivec = _mm512_and_si512(a_i16, _mm512_set1_epi32(0xFFFF0000));
    a_f32_even.ivec = _mm512_slli_epi32(a_i16, 16);
    b_f32_odd.ivec = _mm512_and_si512(b_i16, _mm512_set1_epi32(0xFFFF0000));
    b_f32_even.ivec = _mm512_slli_epi32(b_i16, 16);

    d_f32_odd.fvec = _mm512_sub_ps(a_f32_odd.fvec, b_f32_odd.fvec);
    d_f32_even.fvec = _mm512_sub_ps(a_f32_even.fvec, b_f32_even.fvec);

    d_f32_even.ivec = _mm512_srli_epi32(d_f32_even.ivec, 16);
    d.ivec = _mm512_mask_blend_epi16(0x55555555, d_f32_odd.ivec, d_f32_even.ivec);

    return d.ivec;
}

SIMSIMD_PUBLIC void simsimd_l2_bf16_genoa(simsimd_bf16_t const *a, simsimd_bf16_t const *b, simsimd_size_t n,
                                          simsimd_distance_t *result) {
    simsimd_l2sq_bf16_genoa(a, b, n, result);
    *result = _simsimd_sqrt_f32_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_bf16_genoa(simsimd_bf16_t const *a, simsimd_bf16_t const *b, simsimd_size_t n,
                                            simsimd_distance_t *result) {
    __m512 d2_vec = _mm512_setzero_ps();
    __m512i a_i16_vec, b_i16_vec, d_i16_vec;

simsimd_l2sq_bf16_genoa_cycle:
    if (n < 32) {
        __mmask32 mask = (__mmask32)_bzhi_u32(0xFFFFFFFF, n);
        a_i16_vec = _mm512_maskz_loadu_epi16(mask, a);
        b_i16_vec = _mm512_maskz_loadu_epi16(mask, b);
        n = 0;
    }
    else {
        a_i16_vec = _mm512_loadu_epi16(a);
        b_i16_vec = _mm512_loadu_epi16(b);
        a += 32, b += 32, n -= 32;
    }
    d_i16_vec = _simsimd_substract_bf16x32_genoa(a_i16_vec, b_i16_vec);
    d2_vec = _mm512_dpbf16_ps(d2_vec, (__m512bh)(d_i16_vec), (__m512bh)(d_i16_vec));
    if (n) goto simsimd_l2sq_bf16_genoa_cycle;

    *result = _simsimd_reduce_f32x16_skylake(d2_vec);
}

SIMSIMD_PUBLIC void simsimd_cos_bf16_genoa(simsimd_bf16_t const *a, simsimd_bf16_t const *b, simsimd_size_t n,
                                           simsimd_distance_t *result) {
    __m512 ab_vec = _mm512_setzero_ps();
    __m512 a2_vec = _mm512_setzero_ps();
    __m512 b2_vec = _mm512_setzero_ps();
    __m512i a_i16_vec, b_i16_vec;

simsimd_cos_bf16_genoa_cycle:
    if (n < 32) {
        __mmask32 mask = (__mmask32)_bzhi_u32(0xFFFFFFFF, n);
        a_i16_vec = _mm512_maskz_loadu_epi16(mask, a);
        b_i16_vec = _mm512_maskz_loadu_epi16(mask, b);
        n = 0;
    }
    else {
        a_i16_vec = _mm512_loadu_epi16(a);
        b_i16_vec = _mm512_loadu_epi16(b);
        a += 32, b += 32, n -= 32;
    }
    ab_vec = _mm512_dpbf16_ps(ab_vec, (__m512bh)(a_i16_vec), (__m512bh)(b_i16_vec));
    a2_vec = _mm512_dpbf16_ps(a2_vec, (__m512bh)(a_i16_vec), (__m512bh)(a_i16_vec));
    b2_vec = _mm512_dpbf16_ps(b2_vec, (__m512bh)(b_i16_vec), (__m512bh)(b_i16_vec));
    if (n) goto simsimd_cos_bf16_genoa_cycle;

    simsimd_f32_t ab = _simsimd_reduce_f32x16_skylake(ab_vec);
    simsimd_f32_t a2 = _simsimd_reduce_f32x16_skylake(a2_vec);
    simsimd_f32_t b2 = _simsimd_reduce_f32x16_skylake(b2_vec);
    *result = _simsimd_cos_normalize_f32_haswell(ab, a2, b2);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_GENOA

#if SIMSIMD_TARGET_SAPPHIRE
#pragma GCC push_options
#pragma GCC target("avx2", "avx512f", "avx512vl", "bmi2", "avx512fp16")
#pragma clang attribute push(__attribute__((target("avx2,avx512f,avx512vl,bmi2,avx512fp16"))), apply_to = function)

SIMSIMD_PUBLIC void simsimd_l2_f16_sapphire(simsimd_f16_t const *a, simsimd_f16_t const *b, simsimd_size_t n,
                                            simsimd_distance_t *result) {
    simsimd_l2sq_f16_sapphire(a, b, n, result);
    *result = _simsimd_sqrt_f32_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_f16_sapphire(simsimd_f16_t const *a, simsimd_f16_t const *b, simsimd_size_t n,
                                              simsimd_distance_t *result) {
    __m512h d2_vec = _mm512_setzero_ph();
    __m512i a_i16_vec, b_i16_vec;

simsimd_l2sq_f16_sapphire_cycle:
    if (n < 32) {
        __mmask32 mask = (__mmask32)_bzhi_u32(0xFFFFFFFF, n);
        a_i16_vec = _mm512_maskz_loadu_epi16(mask, a);
        b_i16_vec = _mm512_maskz_loadu_epi16(mask, b);
        n = 0;
    }
    else {
        a_i16_vec = _mm512_loadu_epi16(a);
        b_i16_vec = _mm512_loadu_epi16(b);
        a += 32, b += 32, n -= 32;
    }
    __m512h d_vec = _mm512_sub_ph(_mm512_castsi512_ph(a_i16_vec), _mm512_castsi512_ph(b_i16_vec));
    d2_vec = _mm512_fmadd_ph(d_vec, d_vec, d2_vec);
    if (n) goto simsimd_l2sq_f16_sapphire_cycle;

    *result = _mm512_reduce_add_ph(d2_vec);
}

SIMSIMD_PUBLIC void simsimd_cos_f16_sapphire(simsimd_f16_t const *a, simsimd_f16_t const *b, simsimd_size_t n,
                                             simsimd_distance_t *result) {
    __m512h ab_vec = _mm512_setzero_ph();
    __m512h a2_vec = _mm512_setzero_ph();
    __m512h b2_vec = _mm512_setzero_ph();
    __m512i a_i16_vec, b_i16_vec;

simsimd_cos_f16_sapphire_cycle:
    if (n < 32) {
        __mmask32 mask = (__mmask32)_bzhi_u32(0xFFFFFFFF, n);
        a_i16_vec = _mm512_maskz_loadu_epi16(mask, a);
        b_i16_vec = _mm512_maskz_loadu_epi16(mask, b);
        n = 0;
    }
    else {
        a_i16_vec = _mm512_loadu_epi16(a);
        b_i16_vec = _mm512_loadu_epi16(b);
        a += 32, b += 32, n -= 32;
    }
    ab_vec = _mm512_fmadd_ph(_mm512_castsi512_ph(a_i16_vec), _mm512_castsi512_ph(b_i16_vec), ab_vec);
    a2_vec = _mm512_fmadd_ph(_mm512_castsi512_ph(a_i16_vec), _mm512_castsi512_ph(a_i16_vec), a2_vec);
    b2_vec = _mm512_fmadd_ph(_mm512_castsi512_ph(b_i16_vec), _mm512_castsi512_ph(b_i16_vec), b2_vec);
    if (n) goto simsimd_cos_f16_sapphire_cycle;

    simsimd_f32_t ab = _mm512_reduce_add_ph(ab_vec);
    simsimd_f32_t a2 = _mm512_reduce_add_ph(a2_vec);
    simsimd_f32_t b2 = _mm512_reduce_add_ph(b2_vec);
    *result = _simsimd_cos_normalize_f32_haswell(ab, a2, b2);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_SAPPHIRE

#if SIMSIMD_TARGET_ICE
#pragma GCC push_options
#pragma GCC target("avx2", "avx512f", "avx512vl", "bmi2", "avx512bw", "avx512vnni")
#pragma clang attribute push(__attribute__((target("avx2,avx512f,avx512vl,bmi2,avx512bw,avx512vnni"))), \
                             apply_to = function)

SIMSIMD_PUBLIC void simsimd_l2_i8_ice(simsimd_i8_t const *a, simsimd_i8_t const *b, simsimd_size_t n,
                                      simsimd_distance_t *result) {
    simsimd_l2sq_i8_ice(a, b, n, result);
    *result = _simsimd_sqrt_f32_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_i8_ice(simsimd_i8_t const *a, simsimd_i8_t const *b, simsimd_size_t n,
                                        simsimd_distance_t *result) {
    __m512i d2_i32_vec = _mm512_setzero_si512();
    __m512i a_i16_vec, b_i16_vec, d_i16s_vec;

simsimd_l2sq_i8_ice_cycle:
    if (n < 32) { // TODO: Avoid early i16 upcast to step through 64 values at a time
        __mmask32 mask = (__mmask32)_bzhi_u32(0xFFFFFFFF, n);
        a_i16_vec = _mm512_cvtepi8_epi16(_mm256_maskz_loadu_epi8(mask, a));
        b_i16_vec = _mm512_cvtepi8_epi16(_mm256_maskz_loadu_epi8(mask, b));
        n = 0;
    }
    else {
        a_i16_vec = _mm512_cvtepi8_epi16(_mm256_lddqu_si256((__m256i const *)a));
        b_i16_vec = _mm512_cvtepi8_epi16(_mm256_lddqu_si256((__m256i const *)b));
        a += 32, b += 32, n -= 32;
    }
    d_i16s_vec = _mm512_sub_epi16(a_i16_vec, b_i16_vec);
    d2_i32_vec = _mm512_dpwssd_epi32(d2_i32_vec, d_i16s_vec, d_i16s_vec);
    if (n) goto simsimd_l2sq_i8_ice_cycle;

    *result = _mm512_reduce_add_epi32(d2_i32_vec);
}

SIMSIMD_PUBLIC void simsimd_cos_i8_ice(simsimd_i8_t const *a, simsimd_i8_t const *b, simsimd_size_t n,
                                       simsimd_distance_t *result) {

    __m512i ab_i32_vec = _mm512_setzero_si512();
    __m512i a2_i32_vec = _mm512_setzero_si512();
    __m512i b2_i32_vec = _mm512_setzero_si512();
    __m512i a_i16_vec, b_i16_vec;
simsimd_cos_i8_ice_cycle:
    if (n < 32) {
        __mmask32 mask = (__mmask32)_bzhi_u32(0xFFFFFFFF, n);
        a_i16_vec = _mm512_cvtepi8_epi16(_mm256_maskz_loadu_epi8(mask, a));
        b_i16_vec = _mm512_cvtepi8_epi16(_mm256_maskz_loadu_epi8(mask, b));
        n = 0;
    }
    else {
        a_i16_vec = _mm512_cvtepi8_epi16(_mm256_lddqu_si256((__m256i const *)a));
        b_i16_vec = _mm512_cvtepi8_epi16(_mm256_lddqu_si256((__m256i const *)b));
        a += 32, b += 32, n -= 32;
    }

    // We can't directly use the `_mm512_dpbusd_epi32` intrinsic everywhere,
    // as it's asymmetric with respect to the sign of the input arguments:
    //
    //      Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j]))
    //
    // To compute the squares, we could just drop the sign bit of the second argument.
    // But this would lead to big-big problems on values like `-128`!
    // For dot-products we don't have the luxury of optimizing the sign bit away.
    // Assuming this is an approximate kernel (with reciprocal square root approximations)
    // in the end, we can allow clamping the value to [-127, 127] range.
    //
    // On Ice Lake:
    //
    //  1. `VPDPBUSDS (ZMM, ZMM, ZMM)` can only execute on port 0, with 5 cycle latency.
    //  2. `VPDPWSSDS (ZMM, ZMM, ZMM)` can also only execute on port 0, with 5 cycle latency.
    //  3. `VPMADDWD (ZMM, ZMM, ZMM)` can execute on ports 0 and 5, with 5 cycle latency.
    //
    // On Zen4 Genoa:
    //
    //  1. `VPDPBUSDS (ZMM, ZMM, ZMM)` can execute on ports 0 and 1, with 4 cycle latency.
    //  2. `VPDPWSSDS (ZMM, ZMM, ZMM)` can also execute on ports 0 and 1, with 4 cycle latency.
    //  3. `VPMADDWD (ZMM, ZMM, ZMM)` can execute on ports 0 and 1, with 3 cycle latency.
    //
    // The old solution was complex replied on 1. and 2.:
    //
    //    a_i8_abs_vec = _mm512_abs_epi8(a_i8_vec);
    //    b_i8_abs_vec = _mm512_abs_epi8(b_i8_vec);
    //    a2_i32_vec = _mm512_dpbusds_epi32(a2_i32_vec, a_i8_abs_vec, a_i8_abs_vec);
    //    b2_i32_vec = _mm512_dpbusds_epi32(b2_i32_vec, b_i8_abs_vec, b_i8_abs_vec);
    //    ab_i32_low_vec = _mm512_dpwssds_epi32(                      //
    //        ab_i32_low_vec,                                         //
    //        _mm512_cvtepi8_epi16(_mm512_castsi512_si256(a_i8_vec)), //
    //        _mm512_cvtepi8_epi16(_mm512_castsi512_si256(b_i8_vec)));
    //    ab_i32_high_vec = _mm512_dpwssds_epi32(                           //
    //        ab_i32_high_vec,                                              //
    //        _mm512_cvtepi8_epi16(_mm512_extracti64x4_epi64(a_i8_vec, 1)), //
    //        _mm512_cvtepi8_epi16(_mm512_extracti64x4_epi64(b_i8_vec, 1)));
    //
    // The new solution is simpler and relies on 3.:
    ab_i32_vec = _mm512_add_epi32(ab_i32_vec, _mm512_madd_epi16(a_i16_vec, b_i16_vec));
    a2_i32_vec = _mm512_add_epi32(a2_i32_vec, _mm512_madd_epi16(a_i16_vec, a_i16_vec));
    b2_i32_vec = _mm512_add_epi32(b2_i32_vec, _mm512_madd_epi16(b_i16_vec, b_i16_vec));
    if (n) goto simsimd_cos_i8_ice_cycle;

    int ab = _mm512_reduce_add_epi32(ab_i32_vec);
    int a2 = _mm512_reduce_add_epi32(a2_i32_vec);
    int b2 = _mm512_reduce_add_epi32(b2_i32_vec);
    *result = _simsimd_cos_normalize_f32_haswell(ab, a2, b2);
}
SIMSIMD_PUBLIC void simsimd_l2_u8_ice(simsimd_u8_t const *a, simsimd_u8_t const *b, simsimd_size_t n,
                                      simsimd_distance_t *result) {
    simsimd_l2sq_u8_ice(a, b, n, result);
    *result = _simsimd_sqrt_f32_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_u8_ice(simsimd_u8_t const *a, simsimd_u8_t const *b, simsimd_size_t n,
                                        simsimd_distance_t *result) {
    __m512i d2_i32_low_vec = _mm512_setzero_si512();
    __m512i d2_i32_high_vec = _mm512_setzero_si512();
    __m512i const zeros_vec = _mm512_setzero_si512();
    __m512i d_i16_low_vec, d_i16_high_vec;
    __m512i a_u8_vec, b_u8_vec, d_u8_vec;

simsimd_l2sq_u8_ice_cycle:
    if (n < 64) {
        __mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n);
        a_u8_vec = _mm512_maskz_loadu_epi8(mask, a);
        b_u8_vec = _mm512_maskz_loadu_epi8(mask, b);
        n = 0;
    }
    else {
        a_u8_vec = _mm512_loadu_si512(a);
        b_u8_vec = _mm512_loadu_si512(b);
        a += 64, b += 64, n -= 64;
    }

    // Substracting unsigned vectors in AVX-512 is done by saturating subtraction:
    d_u8_vec = _mm512_or_si512(_mm512_subs_epu8(a_u8_vec, b_u8_vec), _mm512_subs_epu8(b_u8_vec, a_u8_vec));
    d_i16_low_vec = _mm512_unpacklo_epi8(d_u8_vec, zeros_vec);
    d_i16_high_vec = _mm512_unpackhi_epi8(d_u8_vec, zeros_vec);

    // Multiply and accumulate at `int16` level, accumulate at `int32` level:
    d2_i32_low_vec = _mm512_dpwssd_epi32(d2_i32_low_vec, d_i16_low_vec, d_i16_low_vec);
    d2_i32_high_vec = _mm512_dpwssd_epi32(d2_i32_high_vec, d_i16_high_vec, d_i16_high_vec);
    if (n) goto simsimd_l2sq_u8_ice_cycle;

    *result = _mm512_reduce_add_epi32(_mm512_add_epi32(d2_i32_low_vec, d2_i32_high_vec));
}

SIMSIMD_PUBLIC void simsimd_cos_u8_ice(simsimd_u8_t const *a, simsimd_u8_t const *b, simsimd_size_t n,
                                       simsimd_distance_t *result) {

    __m512i ab_i32_low_vec = _mm512_setzero_si512();
    __m512i ab_i32_high_vec = _mm512_setzero_si512();
    __m512i a2_i32_low_vec = _mm512_setzero_si512();
    __m512i a2_i32_high_vec = _mm512_setzero_si512();
    __m512i b2_i32_low_vec = _mm512_setzero_si512();
    __m512i b2_i32_high_vec = _mm512_setzero_si512();
    __m512i const zeros_vec = _mm512_setzero_si512();
    __m512i a_i16_low_vec, a_i16_high_vec, b_i16_low_vec, b_i16_high_vec;
    __m512i a_u8_vec, b_u8_vec;

simsimd_cos_u8_ice_cycle:
    if (n < 64) {
        __mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n);
        a_u8_vec = _mm512_maskz_loadu_epi8(mask, a);
        b_u8_vec = _mm512_maskz_loadu_epi8(mask, b);
        n = 0;
    }
    else {
        a_u8_vec = _mm512_loadu_si512(a);
        b_u8_vec = _mm512_loadu_si512(b);
        a += 64, b += 64, n -= 64;
    }

    // Upcast `uint8` to `int16`. Unlike the signed version, we can use the unpacking
    // instructions instead of extracts, as they are much faster and more efficient.
    a_i16_low_vec = _mm512_unpacklo_epi8(a_u8_vec, zeros_vec);
    a_i16_high_vec = _mm512_unpackhi_epi8(a_u8_vec, zeros_vec);
    b_i16_low_vec = _mm512_unpacklo_epi8(b_u8_vec, zeros_vec);
    b_i16_high_vec = _mm512_unpackhi_epi8(b_u8_vec, zeros_vec);

    // Multiply and accumulate as `int16`, accumulate products as `int32`:
    ab_i32_low_vec = _mm512_dpwssds_epi32(ab_i32_low_vec, a_i16_low_vec, b_i16_low_vec);
    ab_i32_high_vec = _mm512_dpwssds_epi32(ab_i32_high_vec, a_i16_high_vec, b_i16_high_vec);
    a2_i32_low_vec = _mm512_dpwssds_epi32(a2_i32_low_vec, a_i16_low_vec, a_i16_low_vec);
    a2_i32_high_vec = _mm512_dpwssds_epi32(a2_i32_high_vec, a_i16_high_vec, a_i16_high_vec);
    b2_i32_low_vec = _mm512_dpwssds_epi32(b2_i32_low_vec, b_i16_low_vec, b_i16_low_vec);
    b2_i32_high_vec = _mm512_dpwssds_epi32(b2_i32_high_vec, b_i16_high_vec, b_i16_high_vec);
    if (n) goto simsimd_cos_u8_ice_cycle;

    int ab = _mm512_reduce_add_epi32(_mm512_add_epi32(ab_i32_low_vec, ab_i32_high_vec));
    int a2 = _mm512_reduce_add_epi32(_mm512_add_epi32(a2_i32_low_vec, a2_i32_high_vec));
    int b2 = _mm512_reduce_add_epi32(_mm512_add_epi32(b2_i32_low_vec, b2_i32_high_vec));
    *result = _simsimd_cos_normalize_f32_haswell(ab, a2, b2);
}

SIMSIMD_PUBLIC void simsimd_l2_i4x2_ice(simsimd_i4x2_t const *a, simsimd_i4x2_t const *b, simsimd_size_t n_words,
                                        simsimd_distance_t *result) {
    simsimd_l2sq_i4x2_ice(a, b, n_words, result);
    *result = _simsimd_sqrt_f32_haswell(*result);
}
SIMSIMD_PUBLIC void simsimd_l2sq_i4x2_ice(simsimd_i4x2_t const *a, simsimd_i4x2_t const *b, simsimd_size_t n_words,
                                          simsimd_distance_t *result) {

    // While `int8_t` covers the range [-128, 127], `int4_t` covers only [-8, 7].
    // The absolute difference between two 4-bit integers is at most 15 and it is always a `uint4_t` value!
    // Moreover, it's square is at most 225, which fits into `uint8_t` and can be computed with a single
    // lookup table. Accumulating those values is similar to checksumming, a piece of cake for SIMD!
    __m512i const i4_to_i8_lookup_vec = _mm512_set_epi8(        //
        -1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0, //
        -1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0, //
        -1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0, //
        -1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0);
    __m512i const u4_squares_lookup_vec = _mm512_set_epi8(                                        //
        (char)225, (char)196, (char)169, (char)144, 121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, //
        (char)225, (char)196, (char)169, (char)144, 121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, //
        (char)225, (char)196, (char)169, (char)144, 121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, //
        (char)225, (char)196, (char)169, (char)144, 121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0);

    /// The mask used to take the low nibble of each byte.
    __m512i const i4_nibble_vec = _mm512_set1_epi8(0x0F);

    // Temporaries:
    __m512i a_i4x2_vec, b_i4x2_vec;
    __m512i a_i8_low_vec, a_i8_high_vec, b_i8_low_vec, b_i8_high_vec;
    __m512i d_u8_low_vec, d_u8_high_vec; //! Only the low 4 bits are actually used
    __m512i d2_u8_low_vec, d2_u8_high_vec;
    __m512i d2_u16_low_vec, d2_u16_high_vec;

    // Accumulators:
    __m512i d2_u32_vec = _mm512_setzero_si512();

simsimd_l2sq_i4x2_ice_cycle:
    if (n_words < 64) {
        __mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n_words);
        a_i4x2_vec = _mm512_maskz_loadu_epi8(mask, a);
        b_i4x2_vec = _mm512_maskz_loadu_epi8(mask, b);
        n_words = 0;
    }
    else {
        a_i4x2_vec = _mm512_loadu_epi8(a);
        b_i4x2_vec = _mm512_loadu_epi8(b);
        a += 64, b += 64, n_words -= 64;
    }

    // Unpack the 4-bit values into 8-bit values with an empty top nibble.
    a_i8_low_vec = _mm512_and_si512(a_i4x2_vec, i4_nibble_vec);
    a_i8_high_vec = _mm512_and_si512(_mm512_srli_epi64(a_i4x2_vec, 4), i4_nibble_vec);
    b_i8_low_vec = _mm512_and_si512(b_i4x2_vec, i4_nibble_vec);
    b_i8_high_vec = _mm512_and_si512(_mm512_srli_epi64(b_i4x2_vec, 4), i4_nibble_vec);
    a_i8_low_vec = _mm512_shuffle_epi8(i4_to_i8_lookup_vec, a_i8_low_vec);
    a_i8_high_vec = _mm512_shuffle_epi8(i4_to_i8_lookup_vec, a_i8_high_vec);
    b_i8_low_vec = _mm512_shuffle_epi8(i4_to_i8_lookup_vec, b_i8_low_vec);
    b_i8_high_vec = _mm512_shuffle_epi8(i4_to_i8_lookup_vec, b_i8_high_vec);

    // We can implement subtraction with a lookup table, or using `_mm512_sub_epi8`.
    d_u8_low_vec = _mm512_abs_epi8(_mm512_sub_epi8(a_i8_low_vec, b_i8_low_vec));
    d_u8_high_vec = _mm512_abs_epi8(_mm512_sub_epi8(a_i8_high_vec, b_i8_high_vec));

    // Now we can use the lookup table to compute the squares of the 4-bit unsigned integers
    // in the low nibbles of the `d_u8_low_vec` and `d_u8_high_vec` vectors.
    d2_u8_low_vec = _mm512_shuffle_epi8(u4_squares_lookup_vec, d_u8_low_vec);
    d2_u8_high_vec = _mm512_shuffle_epi8(u4_squares_lookup_vec, d_u8_high_vec);

    // Aggregating into 16-bit integers, we need to first upcast our 8-bit values to 16 bits.
    // After that, we will perform one more operation, upcasting further into 32-bit integers.
    d2_u16_low_vec =      //
        _mm512_add_epi16( //
            _mm512_unpacklo_epi8(d2_u8_low_vec, _mm512_setzero_si512()),
            _mm512_unpackhi_epi8(d2_u8_low_vec, _mm512_setzero_si512()));
    d2_u16_high_vec =     //
        _mm512_add_epi16( //
            _mm512_unpacklo_epi8(d2_u8_high_vec, _mm512_setzero_si512()),
            _mm512_unpackhi_epi8(d2_u8_high_vec, _mm512_setzero_si512()));
    d2_u32_vec = _mm512_add_epi32(d2_u32_vec, _mm512_unpacklo_epi16(d2_u16_low_vec, _mm512_setzero_si512()));
    d2_u32_vec = _mm512_add_epi32(d2_u32_vec, _mm512_unpacklo_epi16(d2_u16_high_vec, _mm512_setzero_si512()));
    if (n_words) goto simsimd_l2sq_i4x2_ice_cycle;

    // Finally, we can reduce the 16-bit integers to 32-bit integers and sum them up.
    int d2 = _mm512_reduce_add_epi32(d2_u32_vec);
    *result = d2;
}
SIMSIMD_PUBLIC void simsimd_cos_i4x2_ice(simsimd_i4x2_t const *a, simsimd_i4x2_t const *b, simsimd_size_t n_words,
                                         simsimd_distance_t *result) {

    // We need to compose a lookup table for all the scalar products of 4-bit integers.
    // While `int8_t` covers the range [-128, 127], `int4_t` covers only [-8, 7].
    // Practically speaking, the product of two 4-bit signed integers is a 7-bit integer,
    // as the maximum absolute value of the product is `abs(-8 * -8) == 64`.
    //
    // To store 128 possible values of 2^7 bits we only need 128 single-byte scalars,
    // or just 2x ZMM registers. In that case our lookup will only take `vpermi2b` instruction,
    // easily inokable with `_mm512_permutex2var_epi8` intrinsic with latency of 6 on Sapphire Rapids.
    // The problem is converting 2d indices of our symmetric matrix into 1d offsets in the dense array.
    //
    // Alternatively, we can take the entire symmetric (16 x 16) matrix of products,
    // put into 4x ZMM registers, and use it with `_mm512_shuffle_epi8`, remembering
    // that it can only lookup with 128-bit lanes (16x 8-bit values).
    // That intrinsic has latency 1, but will need to be repeated and combined with
    // multiple iterations of `_mm512_shuffle_i64x2` that has latency 3.
    //
    // Altenatively, we can get down to 3 cycles per lookup with `vpermb` and `_mm512_permutexvar_epi8` intrinsics.
    // For that we can split our (16 x 16) matrix into 4x (8 x 8) submatrices, and use 4x ZMM registers.
    //
    // Still, all of those solutions are quite heavy compared to two parallel calls to `_mm512_dpbusds_epi32`
    // for the dot product. But we can still use the `_mm512_permutexvar_epi8` to compute the squares of the
    // 16 possible `int4_t` values faster.
    //
    // Here is how our `int4_t` range looks:
    //
    //      dec:     0   1   2   3   4   5   6   7  -8  -7  -6  -5  -4  -3  -2  -1
    //      hex:     0   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F
    //
    // Squared:
    //
    //      dec2:    0   1   4   9  16  25  36  49  64  49  36  25  16   9   4   1
    //      hex2:    0   1   4   9  10  19  24  31  40  31  24  19  10   9   4   1
    //
    // Broadcast it to every lane, so that: `square(x) == _mm512_shuffle_epi8(i4_squares_lookup_vec, x)`.
    __m512i const i4_to_i8_lookup_vec = _mm512_set_epi8(        //
        -1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0, //
        -1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0, //
        -1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0, //
        -1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0);
    __m512i const i4_squares_lookup_vec = _mm512_set_epi8(       //
        1, 4, 9, 16, 25, 36, 49, 64, 49, 36, 25, 16, 9, 4, 1, 0, //
        1, 4, 9, 16, 25, 36, 49, 64, 49, 36, 25, 16, 9, 4, 1, 0, //
        1, 4, 9, 16, 25, 36, 49, 64, 49, 36, 25, 16, 9, 4, 1, 0, //
        1, 4, 9, 16, 25, 36, 49, 64, 49, 36, 25, 16, 9, 4, 1, 0);

    /// The mask used to take the low nibble of each byte.
    __m512i const i4_nibble_vec = _mm512_set1_epi8(0x0F);

    // Temporaries:
    __m512i a_i4x2_vec, b_i4x2_vec;
    __m512i a_i8_low_vec, a_i8_high_vec, b_i8_low_vec, b_i8_high_vec;
    __m512i a2_u8_vec, b2_u8_vec;

    // Accumulators:
    __m512i a2_u16_low_vec = _mm512_setzero_si512();
    __m512i a2_u16_high_vec = _mm512_setzero_si512();
    __m512i b2_u16_low_vec = _mm512_setzero_si512();
    __m512i b2_u16_high_vec = _mm512_setzero_si512();
    __m512i ab_i32_low_vec = _mm512_setzero_si512();
    __m512i ab_i32_high_vec = _mm512_setzero_si512();

simsimd_cos_i4x2_ice_cycle:
    if (n_words < 64) {
        __mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n_words);
        a_i4x2_vec = _mm512_maskz_loadu_epi8(mask, a);
        b_i4x2_vec = _mm512_maskz_loadu_epi8(mask, b);
        n_words = 0;
    }
    else {
        a_i4x2_vec = _mm512_loadu_epi8(a);
        b_i4x2_vec = _mm512_loadu_epi8(b);
        a += 64, b += 64, n_words -= 64;
    }

    // Unpack the 4-bit values into 8-bit values with an empty top nibble.
    // For now, they are not really 8-bit integers, as they are not sign-extended.
    // That part will come later, using the `i4_to_i8_lookup_vec` lookup.
    a_i8_low_vec = _mm512_and_si512(a_i4x2_vec, i4_nibble_vec);
    a_i8_high_vec = _mm512_and_si512(_mm512_srli_epi64(a_i4x2_vec, 4), i4_nibble_vec);
    b_i8_low_vec = _mm512_and_si512(b_i4x2_vec, i4_nibble_vec);
    b_i8_high_vec = _mm512_and_si512(_mm512_srli_epi64(b_i4x2_vec, 4), i4_nibble_vec);

    // Compute the squares of the 4-bit integers.
    // For symmetry we could have used 4 registers, aka "a2_i8_low_vec", "a2_i8_high_vec", "b2_i8_low_vec",
    // "b2_i8_high_vec". But the largest square value is just 64, so we can safely aggregate into 8-bit unsigned values.
    a2_u8_vec = _mm512_add_epi8(_mm512_shuffle_epi8(i4_squares_lookup_vec, a_i8_low_vec),
                                _mm512_shuffle_epi8(i4_squares_lookup_vec, a_i8_high_vec));
    b2_u8_vec = _mm512_add_epi8(_mm512_shuffle_epi8(i4_squares_lookup_vec, b_i8_low_vec),
                                _mm512_shuffle_epi8(i4_squares_lookup_vec, b_i8_high_vec));

    // We can safely aggregate into just 16-bit sums without overflow, if the vectors have less than:
    //      (2 scalars / byte) * (64 bytes / register) * (256 non-overflowing 8-bit additions in 16-bit intesgers)
    //      = 32'768 dimensions.
    //
    // We use saturated addition here to clearly inform in case of overflow.
    a2_u16_low_vec = _mm512_adds_epu16(a2_u16_low_vec, _mm512_cvtepu8_epi16(_mm512_castsi512_si256(a2_u8_vec)));
    a2_u16_high_vec = _mm512_adds_epu16(a2_u16_high_vec, _mm512_cvtepu8_epi16(_mm512_extracti64x4_epi64(a2_u8_vec, 1)));
    b2_u16_low_vec = _mm512_adds_epu16(b2_u16_low_vec, _mm512_cvtepu8_epi16(_mm512_castsi512_si256(a2_u8_vec)));
    b2_u16_high_vec = _mm512_adds_epu16(b2_u16_high_vec, _mm512_cvtepu8_epi16(_mm512_extracti64x4_epi64(a2_u8_vec, 1)));

    // Time to perform the proper sign extension of the 4-bit integers to 8-bit integers.
    a_i8_low_vec = _mm512_shuffle_epi8(i4_to_i8_lookup_vec, a_i8_low_vec);
    a_i8_high_vec = _mm512_shuffle_epi8(i4_to_i8_lookup_vec, a_i8_high_vec);
    b_i8_low_vec = _mm512_shuffle_epi8(i4_to_i8_lookup_vec, b_i8_low_vec);
    b_i8_high_vec = _mm512_shuffle_epi8(i4_to_i8_lookup_vec, b_i8_high_vec);

    // The same trick won't work for the primary dot-product, as the signs vector
    // components may differ significantly. So we have to use two `_mm512_dpwssds_epi32`
    // intrinsics instead, upcasting four chunks to 16-bit integers beforehand!
    // Alternatively, we can flip the signs of the second argument and use `_mm512_dpbusds_epi32`,
    // but it ends up taking more instructions.
    ab_i32_low_vec = _mm512_dpwssds_epi32(                          //
        ab_i32_low_vec,                                             //
        _mm512_cvtepi8_epi16(_mm512_castsi512_si256(a_i8_low_vec)), //
        _mm512_cvtepi8_epi16(_mm512_castsi512_si256(b_i8_low_vec)));
    ab_i32_low_vec = _mm512_dpwssds_epi32(                                //
        ab_i32_low_vec,                                                   //
        _mm512_cvtepi8_epi16(_mm512_extracti64x4_epi64(a_i8_low_vec, 1)), //
        _mm512_cvtepi8_epi16(_mm512_extracti64x4_epi64(b_i8_low_vec, 1)));
    ab_i32_high_vec = _mm512_dpwssds_epi32(                          //
        ab_i32_high_vec,                                             //
        _mm512_cvtepi8_epi16(_mm512_castsi512_si256(a_i8_high_vec)), //
        _mm512_cvtepi8_epi16(_mm512_castsi512_si256(b_i8_high_vec)));
    ab_i32_high_vec = _mm512_dpwssds_epi32(                                //
        ab_i32_high_vec,                                                   //
        _mm512_cvtepi8_epi16(_mm512_extracti64x4_epi64(a_i8_high_vec, 1)), //
        _mm512_cvtepi8_epi16(_mm512_extracti64x4_epi64(b_i8_high_vec, 1)));
    if (n_words) goto simsimd_cos_i4x2_ice_cycle;

    int ab = _mm512_reduce_add_epi32(_mm512_add_epi32(ab_i32_low_vec, ab_i32_high_vec));
    unsigned short a2_u16[32], b2_u16[32];
    _mm512_storeu_si512(a2_u16, _mm512_add_epi16(a2_u16_low_vec, a2_u16_high_vec));
    _mm512_storeu_si512(b2_u16, _mm512_add_epi16(b2_u16_low_vec, b2_u16_high_vec));
    unsigned int a2 = 0, b2 = 0;
    for (int i = 0; i < 32; ++i) a2 += a2_u16[i], b2 += b2_u16[i];
    *result = _simsimd_cos_normalize_f32_haswell(ab, a2, b2);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_ICE

#if SIMSIMD_TARGET_SIERRA
#pragma GCC push_options
#pragma GCC target("avx2", "bmi2", "avx2vnni")
#pragma clang attribute push(__attribute__((target("avx2,bmi2,avx2vnni"))), apply_to = function)

SIMSIMD_PUBLIC void simsimd_cos_i8_sierra(simsimd_i8_t const *a, simsimd_i8_t const *b, simsimd_size_t n,
                                          simsimd_distance_t *result) {

    __m256i ab_i32_vec = _mm256_setzero_si256();
    __m256i a2_i32_vec = _mm256_setzero_si256();
    __m256i b2_i32_vec = _mm256_setzero_si256();

    simsimd_size_t i = 0;
    for (; i + 32 <= n; i += 32) {
        __m256i a_i8_vec = _mm256_lddqu_si256((__m256i const *)(a + i));
        __m256i b_i8_vec = _mm256_lddqu_si256((__m256i const *)(b + i));
        ab_i32_vec = _mm256_dpbssds_epi32(ab_i32_vec, a_i8_vec, b_i8_vec);
        a2_i32_vec = _mm256_dpbssds_epi32(a2_i32_vec, a_i8_vec, a_i8_vec);
        b2_i32_vec = _mm256_dpbssds_epi32(b2_i32_vec, b_i8_vec, b_i8_vec);
    }

    // Further reduce to a single sum for each vector
    int ab = _simsimd_reduce_i32x8_haswell(ab_i32_vec);
    int a2 = _simsimd_reduce_i32x8_haswell(a2_i32_vec);
    int b2 = _simsimd_reduce_i32x8_haswell(b2_i32_vec);

    // Take care of the tail:
    for (; i < n; ++i) {
        int ai = a[i], bi = b[i];
        ab += ai * bi, a2 += ai * ai, b2 += bi * bi;
    }

    *result = _simsimd_cos_normalize_f32_haswell(ab, a2, b2);
}

#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_SIERRA
#endif // _SIMSIMD_TARGET_X86

#ifdef __cplusplus
}
#endif

#endif