File: lib.rs

package info (click to toggle)
rust-simsimd 6.5.12-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,016 kB
  • sloc: ansic: 10,568; makefile: 2
file content (1845 lines) | stat: -rw-r--r-- 65,901 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
//! # SpatialSimilarity - Hardware-Accelerated Similarity Metrics and Distance Functions
//!
//! * Targets ARM NEON, SVE, x86 AVX2, AVX-512 (VNNI, FP16) hardware backends.
//! * Handles `f64` double- and `f32` single-precision, integral, and binary vectors.
//! * Exposes half-precision (`f16`) and brain floating point (`bf16`) types.
//! * Zero-dependency header-only C 99 library with bindings for Rust and other languages.
//!
//! ## Implemented distance functions include:
//!
//! * Euclidean (L2), inner product, and cosine (angular) spatial distances.
//! * Hamming (~ Manhattan) and Jaccard (~ Tanimoto) binary distances.
//! * Kullback-Leibler and Jensen-Shannon divergences for probability distributions.
//!
//! ## Example
//!
//! ```rust
//! use simsimd::SpatialSimilarity;
//!
//! let a = &[1, 2, 3];
//! let b = &[4, 5, 6];
//!
//! // Compute cosine distance
//! let cos_dist = i8::cos(a, b);
//!
//! // Compute dot product distance
//! let dot_product = i8::dot(a, b);
//!
//! // Compute squared Euclidean distance
//! let l2sq_dist = i8::l2sq(a, b);
//!
//! // Optimize performance by flushing denormals
//! simsimd::capabilities::flush_denormals();
//! ```
//!
//! ## Mixed Precision Support
//!
//! ```rust
//! use simsimd::{SpatialSimilarity, f16, bf16};
//!
//! // Work with half-precision floats
//! let half_a: Vec<f16> = vec![1.0, 2.0, 3.0].iter().map(|&x| f16::from_f32(x)).collect();
//! let half_b: Vec<f16> = vec![4.0, 5.0, 6.0].iter().map(|&x| f16::from_f32(x)).collect();
//! let half_cos_dist = f16::cos(&half_a, &half_b);
//!
//! // Work with brain floats
//! let brain_a: Vec<bf16> = vec![1.0, 2.0, 3.0].iter().map(|&x| bf16::from_f32(x)).collect();
//! let brain_b: Vec<bf16> = vec![4.0, 5.0, 6.0].iter().map(|&x| bf16::from_f32(x)).collect();
//! let brain_cos_dist = bf16::cos(&brain_a, &brain_b);
//!
//! // Direct bit manipulation
//! let half = f16::from_f32(3.14);
//! let bits = half.0; // Access raw u16 representation
//! let reconstructed = f16(bits);
//! ```
//!
//! ## Traits
//!
//! The `SpatialSimilarity` trait covers following methods:
//!
//! - `cosine(a: &[Self], b: &[Self]) -> Option<Distance>`: Computes cosine distance (1 - similarity) between two slices.
//! - `dot(a: &[Self], b: &[Self]) -> Option<Distance>`: Computes dot product distance between two slices.
//! - `sqeuclidean(a: &[Self], b: &[Self]) -> Option<Distance>`: Computes squared Euclidean distance between two slices.
//!
//! The `BinarySimilarity` trait covers following methods:
//!
//! - `hamming(a: &[Self], b: &[Self]) -> Option<Distance>`: Computes Hamming distance between two slices.
//! - `jaccard(a: &[Self], b: &[Self]) -> Option<Distance>`: Computes Jaccard distance between two slices.
//!
//! The `ProbabilitySimilarity` trait covers following methods:
//!
//! - `jensenshannon(a: &[Self], b: &[Self]) -> Option<Distance>`: Computes Jensen-Shannon divergence between two slices.
//! - `kullbackleibler(a: &[Self], b: &[Self]) -> Option<Distance>`: Computes Kullback-Leibler divergence between two slices.
//!
#![allow(non_camel_case_types)]
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]

pub type Distance = f64;
pub type ComplexProduct = (f64, f64);

/// Size type used in C FFI to match `simsimd_size_t` which is always `uint64_t`.
/// This is aliased to `u64` instead of `usize` to maintain ABI compatibility across
/// all platforms, including 32-bit architectures where `usize` is 32-bit but the
/// C library expects 64-bit size parameters.
///
/// TODO: In v7, change the C library to use `size_t` and this to `usize`.
type u64size = u64;

/// Compatibility function for pre 1.85 Rust versions lacking `f32::abs`.
#[inline(always)]
fn f32_abs_compat(x: f32) -> f32 {
    f32::from_bits(x.to_bits() & 0x7FFF_FFFF)
}

#[link(name = "simsimd")]
extern "C" {

    fn simsimd_dot_i8(a: *const i8, b: *const i8, c: u64size, d: *mut Distance);
    fn simsimd_dot_f16(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_dot_bf16(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_dot_f32(a: *const f32, b: *const f32, c: u64size, d: *mut Distance);
    fn simsimd_dot_f64(a: *const f64, b: *const f64, c: u64size, d: *mut Distance);

    fn simsimd_dot_f16c(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_dot_bf16c(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_dot_f32c(a: *const f32, b: *const f32, c: u64size, d: *mut Distance);
    fn simsimd_dot_f64c(a: *const f64, b: *const f64, c: u64size, d: *mut Distance);

    fn simsimd_vdot_f16c(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_vdot_bf16c(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_vdot_f32c(a: *const f32, b: *const f32, c: u64size, d: *mut Distance);
    fn simsimd_vdot_f64c(a: *const f64, b: *const f64, c: u64size, d: *mut Distance);

    fn simsimd_cos_i8(a: *const i8, b: *const i8, c: u64size, d: *mut Distance);
    fn simsimd_cos_f16(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_cos_bf16(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_cos_f32(a: *const f32, b: *const f32, c: u64size, d: *mut Distance);
    fn simsimd_cos_f64(a: *const f64, b: *const f64, c: u64size, d: *mut Distance);

    fn simsimd_l2sq_i8(a: *const i8, b: *const i8, c: u64size, d: *mut Distance);
    fn simsimd_l2sq_f16(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_l2sq_bf16(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_l2sq_f32(a: *const f32, b: *const f32, c: u64size, d: *mut Distance);
    fn simsimd_l2sq_f64(a: *const f64, b: *const f64, c: u64size, d: *mut Distance);

    fn simsimd_l2_i8(a: *const i8, b: *const i8, c: u64size, d: *mut Distance);
    fn simsimd_l2_f16(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_l2_bf16(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_l2_f32(a: *const f32, b: *const f32, c: u64size, d: *mut Distance);
    fn simsimd_l2_f64(a: *const f64, b: *const f64, c: u64size, d: *mut Distance);

    fn simsimd_hamming_b8(a: *const u8, b: *const u8, c: u64size, d: *mut Distance);
    fn simsimd_jaccard_b8(a: *const u8, b: *const u8, c: u64size, d: *mut Distance);

    fn simsimd_js_f16(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_js_bf16(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_js_f32(a: *const f32, b: *const f32, c: u64size, d: *mut Distance);
    fn simsimd_js_f64(a: *const f64, b: *const f64, c: u64size, d: *mut Distance);

    fn simsimd_kl_f16(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_kl_bf16(a: *const u16, b: *const u16, c: u64size, d: *mut Distance);
    fn simsimd_kl_f32(a: *const f32, b: *const f32, c: u64size, d: *mut Distance);
    fn simsimd_kl_f64(a: *const f64, b: *const f64, c: u64size, d: *mut Distance);

    fn simsimd_intersect_u16(
        a: *const u16,
        b: *const u16,
        a_length: u64size,
        b_length: u64size,
        d: *mut Distance,
    );
    fn simsimd_intersect_u32(
        a: *const u32,
        b: *const u32,
        a_length: u64size,
        b_length: u64size,
        d: *mut Distance,
    );

    fn simsimd_uses_neon() -> i32;
    fn simsimd_uses_neon_f16() -> i32;
    fn simsimd_uses_neon_bf16() -> i32;
    fn simsimd_uses_neon_i8() -> i32;
    fn simsimd_uses_sve() -> i32;
    fn simsimd_uses_sve_f16() -> i32;
    fn simsimd_uses_sve_bf16() -> i32;
    fn simsimd_uses_sve_i8() -> i32;
    fn simsimd_uses_haswell() -> i32;
    fn simsimd_uses_skylake() -> i32;
    fn simsimd_uses_ice() -> i32;
    fn simsimd_uses_genoa() -> i32;
    fn simsimd_uses_sapphire() -> i32;
    fn simsimd_uses_turin() -> i32;
    fn simsimd_uses_sierra() -> i32;

    fn simsimd_flush_denormals() -> i32;
    fn simsimd_uses_dynamic_dispatch() -> i32;

    fn simsimd_f32_to_f16(f32_value: f32, result_ptr: *mut u16);
    fn simsimd_f16_to_f32(f16_ptr: *const u16) -> f32;
    fn simsimd_f32_to_bf16(f32_value: f32, result_ptr: *mut u16);
    fn simsimd_bf16_to_f32(bf16_ptr: *const u16) -> f32;
}

/// A half-precision (16-bit) floating point number.
///
/// This type represents IEEE 754 half-precision binary floating-point format.
/// It provides conversion methods to and from f32, and the underlying u16
/// representation is publicly accessible for direct bit manipulation.
///
/// # Examples
///
/// ```
/// use simsimd::f16;
///
/// // Create from f32
/// let half = f16::from_f32(3.14);
///
/// // Convert back to f32
/// let float = half.to_f32();
///
/// // Direct access to bits
/// let bits = half.0;
/// ```
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct f16(pub u16);

impl f16 {
    /// Positive zero.
    pub const ZERO: Self = f16(0);

    /// Positive one.
    pub const ONE: Self = f16(0x3C00);

    /// Negative one.
    pub const NEG_ONE: Self = f16(0xBC00);

    /// Converts an f32 to f16 representation.
    ///
    /// # Examples
    ///
    /// ```
    /// use simsimd::f16;
    /// let half = f16::from_f32(3.14159);
    /// ```
    #[inline(always)]
    pub fn from_f32(value: f32) -> Self {
        let mut result: u16 = 0;
        unsafe { simsimd_f32_to_f16(value, &mut result) };
        f16(result)
    }

    /// Converts the f16 to an f32.
    ///
    /// # Examples
    ///
    /// ```
    /// use simsimd::f16;
    /// let half = f16::from_f32(3.14159);
    /// let float = half.to_f32();
    /// ```
    #[inline(always)]
    pub fn to_f32(self) -> f32 {
        unsafe { simsimd_f16_to_f32(&self.0) }
    }

    /// Returns true if this value is NaN.
    #[inline(always)]
    pub fn is_nan(self) -> bool {
        self.to_f32().is_nan()
    }

    /// Returns true if this value is positive or negative infinity.
    #[inline(always)]
    pub fn is_infinite(self) -> bool {
        self.to_f32().is_infinite()
    }

    /// Returns true if this number is neither infinite nor NaN.
    #[inline(always)]
    pub fn is_finite(self) -> bool {
        self.to_f32().is_finite()
    }

    /// Returns the absolute value of self.
    #[inline(always)]
    pub fn abs(self) -> Self {
        Self::from_f32(f32_abs_compat(self.to_f32()))
    }

    /// Returns the largest integer less than or equal to a number.
    ///
    /// This method is only available when the `std` feature is enabled.
    #[cfg(feature = "std")]
    #[inline(always)]
    pub fn floor(self) -> Self {
        Self::from_f32(self.to_f32().floor())
    }

    /// Returns the smallest integer greater than or equal to a number.
    ///
    /// This method is only available when the `std` feature is enabled.
    #[cfg(feature = "std")]
    #[inline(always)]
    pub fn ceil(self) -> Self {
        Self::from_f32(self.to_f32().ceil())
    }

    /// Returns the nearest integer to a number. Round half-way cases away from 0.0.
    ///
    /// This method is only available when the `std` feature is enabled.
    #[cfg(feature = "std")]
    #[inline(always)]
    pub fn round(self) -> Self {
        Self::from_f32(self.to_f32().round())
    }
}

#[cfg(feature = "std")]
impl core::fmt::Display for f16 {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        write!(f, "{}", self.to_f32())
    }
}

impl core::ops::Add for f16 {
    type Output = Self;

    #[inline(always)]
    fn add(self, rhs: Self) -> Self::Output {
        Self::from_f32(self.to_f32() + rhs.to_f32())
    }
}

impl core::ops::Sub for f16 {
    type Output = Self;

    #[inline(always)]
    fn sub(self, rhs: Self) -> Self::Output {
        Self::from_f32(self.to_f32() - rhs.to_f32())
    }
}

impl core::ops::Mul for f16 {
    type Output = Self;

    #[inline(always)]
    fn mul(self, rhs: Self) -> Self::Output {
        Self::from_f32(self.to_f32() * rhs.to_f32())
    }
}

impl core::ops::Div for f16 {
    type Output = Self;

    #[inline(always)]
    fn div(self, rhs: Self) -> Self::Output {
        Self::from_f32(self.to_f32() / rhs.to_f32())
    }
}

impl core::ops::Neg for f16 {
    type Output = Self;

    #[inline(always)]
    fn neg(self) -> Self::Output {
        Self::from_f32(-self.to_f32())
    }
}

impl core::cmp::PartialOrd for f16 {
    #[inline(always)]
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
        self.to_f32().partial_cmp(&other.to_f32())
    }
}

/// A brain floating point (bfloat16) number.
///
/// This type represents Google's bfloat16 format, which truncates IEEE 754
/// single-precision to 16 bits by keeping the exponent bits but reducing
/// the mantissa. This provides a wider range than f16 but lower precision.
///
/// # Examples
///
/// ```
/// use simsimd::bf16;
///
/// // Create from f32
/// let brain_half = bf16::from_f32(3.14);
///
/// // Convert back to f32
/// let float = brain_half.to_f32();
///
/// // Direct access to bits
/// let bits = brain_half.0;
/// ```
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct bf16(pub u16);

impl bf16 {
    /// Positive zero.
    pub const ZERO: Self = bf16(0);

    /// Positive one.
    pub const ONE: Self = bf16(0x3F80);

    /// Negative one.
    pub const NEG_ONE: Self = bf16(0xBF80);

    /// Converts an f32 to bf16 representation.
    ///
    /// # Examples
    ///
    /// ```
    /// use simsimd::bf16;
    /// let brain_half = bf16::from_f32(3.14159);
    /// ```
    #[inline(always)]
    pub fn from_f32(value: f32) -> Self {
        let mut result: u16 = 0;
        unsafe { simsimd_f32_to_bf16(value, &mut result) };
        bf16(result)
    }

    /// Converts the bf16 to an f32.
    ///
    /// # Examples
    ///
    /// ```
    /// use simsimd::bf16;
    /// let brain_half = bf16::from_f32(3.14159);
    /// let float = brain_half.to_f32();
    /// ```
    #[inline(always)]
    pub fn to_f32(self) -> f32 {
        unsafe { simsimd_bf16_to_f32(&self.0) }
    }

    /// Returns true if this value is NaN.
    #[inline(always)]
    pub fn is_nan(self) -> bool {
        self.to_f32().is_nan()
    }

    /// Returns true if this value is positive or negative infinity.
    #[inline(always)]
    pub fn is_infinite(self) -> bool {
        self.to_f32().is_infinite()
    }

    /// Returns true if this number is neither infinite nor NaN.
    #[inline(always)]
    pub fn is_finite(self) -> bool {
        self.to_f32().is_finite()
    }

    /// Returns the absolute value of self.
    #[inline(always)]
    pub fn abs(self) -> Self {
        Self::from_f32(f32_abs_compat(self.to_f32()))
    }

    /// Returns the largest integer less than or equal to a number.
    ///
    /// This method is only available when the `std` feature is enabled.
    #[cfg(feature = "std")]
    #[inline(always)]
    pub fn floor(self) -> Self {
        Self::from_f32(self.to_f32().floor())
    }

    /// Returns the smallest integer greater than or equal to a number.
    ///
    /// This method is only available when the `std` feature is enabled.
    #[cfg(feature = "std")]
    #[inline(always)]
    pub fn ceil(self) -> Self {
        Self::from_f32(self.to_f32().ceil())
    }

    /// Returns the nearest integer to a number. Round half-way cases away from 0.0.
    ///
    /// This method is only available when the `std` feature is enabled.
    #[cfg(feature = "std")]
    #[inline(always)]
    pub fn round(self) -> Self {
        Self::from_f32(self.to_f32().round())
    }
}

#[cfg(feature = "std")]
impl core::fmt::Display for bf16 {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        write!(f, "{}", self.to_f32())
    }
}

impl core::ops::Add for bf16 {
    type Output = Self;

    #[inline(always)]
    fn add(self, rhs: Self) -> Self::Output {
        Self::from_f32(self.to_f32() + rhs.to_f32())
    }
}

impl core::ops::Sub for bf16 {
    type Output = Self;

    #[inline(always)]
    fn sub(self, rhs: Self) -> Self::Output {
        Self::from_f32(self.to_f32() - rhs.to_f32())
    }
}

impl core::ops::Mul for bf16 {
    type Output = Self;

    #[inline(always)]
    fn mul(self, rhs: Self) -> Self::Output {
        Self::from_f32(self.to_f32() * rhs.to_f32())
    }
}

impl core::ops::Div for bf16 {
    type Output = Self;

    #[inline(always)]
    fn div(self, rhs: Self) -> Self::Output {
        Self::from_f32(self.to_f32() / rhs.to_f32())
    }
}

impl core::ops::Neg for bf16 {
    type Output = Self;

    #[inline(always)]
    fn neg(self) -> Self::Output {
        Self::from_f32(-self.to_f32())
    }
}

impl core::cmp::PartialOrd for bf16 {
    #[inline(always)]
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
        self.to_f32().partial_cmp(&other.to_f32())
    }
}

/// The `capabilities` module provides functions for detecting the hardware features
/// available on the current system.
pub mod capabilities {

    pub fn uses_neon() -> bool {
        unsafe { crate::simsimd_uses_neon() != 0 }
    }

    pub fn uses_neon_f16() -> bool {
        unsafe { crate::simsimd_uses_neon_f16() != 0 }
    }

    pub fn uses_neon_bf16() -> bool {
        unsafe { crate::simsimd_uses_neon_bf16() != 0 }
    }

    pub fn uses_neon_i8() -> bool {
        unsafe { crate::simsimd_uses_neon_i8() != 0 }
    }

    pub fn uses_sve() -> bool {
        unsafe { crate::simsimd_uses_sve() != 0 }
    }

    pub fn uses_sve_f16() -> bool {
        unsafe { crate::simsimd_uses_sve_f16() != 0 }
    }

    pub fn uses_sve_bf16() -> bool {
        unsafe { crate::simsimd_uses_sve_bf16() != 0 }
    }

    pub fn uses_sve_i8() -> bool {
        unsafe { crate::simsimd_uses_sve_i8() != 0 }
    }

    pub fn uses_haswell() -> bool {
        unsafe { crate::simsimd_uses_haswell() != 0 }
    }

    pub fn uses_skylake() -> bool {
        unsafe { crate::simsimd_uses_skylake() != 0 }
    }

    pub fn uses_ice() -> bool {
        unsafe { crate::simsimd_uses_ice() != 0 }
    }

    pub fn uses_genoa() -> bool {
        unsafe { crate::simsimd_uses_genoa() != 0 }
    }

    pub fn uses_sapphire() -> bool {
        unsafe { crate::simsimd_uses_sapphire() != 0 }
    }

    pub fn uses_turin() -> bool {
        unsafe { crate::simsimd_uses_turin() != 0 }
    }

    pub fn uses_sierra() -> bool {
        unsafe { crate::simsimd_uses_sierra() != 0 }
    }

    /// Flushes denormalized numbers to zero on the current CPU architecture.
    ///
    /// This function should be called on each thread before any SIMD operations
    /// to avoid performance penalties. When facing denormalized values,
    /// Fused-Multiply-Add (FMA) operations can be up to 30x slower.
    ///
    /// # Returns
    ///
    /// Returns `true` if the operation was successful, `false` otherwise.
    pub fn flush_denormals() -> bool {
        unsafe { crate::simsimd_flush_denormals() != 0 }
    }

    /// Checks if the library is using dynamic dispatch for function selection.
    ///
    /// # Returns
    ///
    /// Returns `true` when the C backend is compiled with dynamic dispatch
    /// (default for this crate via `build.rs`), otherwise `false`.
    pub fn uses_dynamic_dispatch() -> bool {
        unsafe { crate::simsimd_uses_dynamic_dispatch() != 0 }
    }
}

/// `SpatialSimilarity` provides a set of trait methods for computing similarity
/// or distance between spatial data vectors in SIMD (Single Instruction, Multiple Data) context.
/// These methods can be used to calculate metrics like cosine distance, dot product,
/// and squared Euclidean distance between two slices of data.
///
/// Each method takes two slices of data (a and b) and returns an Option<Distance>.
/// The result is `None` if the slices are not of the same length, as these operations
/// require one-to-one correspondence between the elements of the slices.
/// Otherwise, it returns the computed similarity or distance as `Some(f64)`.
/// Convenience methods like `cosine`/`sqeuclidean` delegate to the core methods
/// `cos`/`l2sq` implemented by this trait.
pub trait SpatialSimilarity
where
    Self: Sized,
{
    /// Computes the cosine distance between two slices.
    /// The cosine distance is 1 minus the cosine similarity between two non-zero vectors
    /// of an dot product space that measures the cosine of the angle between them.
    fn cos(a: &[Self], b: &[Self]) -> Option<Distance>;

    /// Computes the inner product (also known as dot product) between two slices.
    /// The dot product is the sum of the products of the corresponding entries
    /// of the two sequences of numbers.
    fn dot(a: &[Self], b: &[Self]) -> Option<Distance>;

    /// Computes the squared Euclidean distance between two slices.
    /// The squared Euclidean distance is the sum of the squared differences
    /// between corresponding elements of the two slices.
    fn l2sq(a: &[Self], b: &[Self]) -> Option<Distance>;

    /// Computes the Euclidean distance between two slices.
    /// The Euclidean distance is the square root of
    //  sum of the squared differences between corresponding
    /// elements of the two slices.
    fn l2(a: &[Self], b: &[Self]) -> Option<Distance>;

    /// Computes the squared Euclidean distance between two slices.
    /// The squared Euclidean distance is the sum of the squared differences
    /// between corresponding elements of the two slices.
    fn sqeuclidean(a: &[Self], b: &[Self]) -> Option<Distance> {
        SpatialSimilarity::l2sq(a, b)
    }

    /// Computes the Euclidean distance between two slices.
    /// The Euclidean distance is the square root of the
    /// sum of the squared differences between corresponding
    /// elements of the two slices.
    fn euclidean(a: &[Self], b: &[Self]) -> Option<Distance> {
        SpatialSimilarity::l2(a, b)
    }

    /// Computes the squared Euclidean distance between two slices.
    /// The squared Euclidean distance is the sum of the squared differences
    /// between corresponding elements of the two slices.
    fn inner(a: &[Self], b: &[Self]) -> Option<Distance> {
        SpatialSimilarity::dot(a, b)
    }

    /// Computes the cosine distance between two slices.
    /// The cosine distance is 1 minus the cosine similarity between two non-zero vectors
    /// of an dot product space that measures the cosine of the angle between them.
    fn cosine(a: &[Self], b: &[Self]) -> Option<Distance> {
        SpatialSimilarity::cos(a, b)
    }
}

/// `BinarySimilarity` provides trait methods for computing similarity metrics
/// that are commonly used with binary data vectors, such as Hamming distance
/// and Jaccard index.
///
/// The methods accept two slices of binary data and return an Option<Distance>
/// indicating the computed similarity or distance, with `None` returned if the
/// slices differ in length.
pub trait BinarySimilarity
where
    Self: Sized,
{
    /// Computes the Hamming distance between two binary data slices.
    /// The Hamming distance between two strings of equal length is the number of
    /// bits at which the corresponding values are different.
    fn hamming(a: &[Self], b: &[Self]) -> Option<Distance>;

    /// Computes the Jaccard index between two bitsets represented by binary data slices.
    /// The Jaccard index, also known as the Jaccard similarity coefficient, is a statistic
    /// used for gauging the similarity and diversity of sample sets.
    fn jaccard(a: &[Self], b: &[Self]) -> Option<Distance>;
}

/// `ProbabilitySimilarity` provides trait methods for computing similarity or divergence
/// measures between probability distributions, such as the Jensen-Shannon divergence
/// and the Kullback-Leibler divergence.
///
/// These methods are particularly useful in contexts such as information theory and
/// machine learning, where one often needs to measure how one probability distribution
/// differs from a second, reference probability distribution.
pub trait ProbabilitySimilarity
where
    Self: Sized,
{
    /// Computes the Jensen-Shannon divergence between two probability distributions.
    /// The Jensen-Shannon divergence is a method of measuring the similarity between
    /// two probability distributions. It is based on the Kullback-Leibler divergence,
    /// but is symmetric and always has a finite value.
    fn jensenshannon(a: &[Self], b: &[Self]) -> Option<Distance>;

    /// Computes the Kullback-Leibler divergence between two probability distributions.
    /// The Kullback-Leibler divergence is a measure of how one probability distribution
    /// diverges from a second, expected probability distribution.
    fn kullbackleibler(a: &[Self], b: &[Self]) -> Option<Distance>;
}

/// `ComplexProducts` provides trait methods for computing products between
/// complex number vectors. This includes standard and Hermitian dot products.
pub trait ComplexProducts
where
    Self: Sized,
{
    /// Computes the dot product between two complex number vectors.
    fn dot(a: &[Self], b: &[Self]) -> Option<ComplexProduct>;

    /// Computes the Hermitian dot product (conjugate dot product) between two complex number vectors.
    fn vdot(a: &[Self], b: &[Self]) -> Option<ComplexProduct>;
}

/// `Sparse` provides trait methods for sparse vectors.
pub trait Sparse
where
    Self: Sized,
{
    /// Computes the number of common elements between two sparse vectors.
    /// both vectors must be sorted in ascending order.
    fn intersect(a: &[Self], b: &[Self]) -> Option<Distance>;
}

impl BinarySimilarity for u8 {
    fn hamming(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_hamming_b8(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn jaccard(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_jaccard_b8(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }
}

impl SpatialSimilarity for i8 {
    fn cos(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_cos_i8(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn dot(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_dot_i8(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn l2sq(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_l2sq_i8(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn l2(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_l2_i8(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }
}

impl Sparse for u16 {
    fn intersect(a: &[Self], b: &[Self]) -> Option<Distance> {
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe {
            simsimd_intersect_u16(
                a.as_ptr(),
                b.as_ptr(),
                a.len() as u64size,
                b.len() as u64size,
                distance_ptr,
            )
        };
        Some(distance_value)
    }
}

impl Sparse for u32 {
    fn intersect(a: &[Self], b: &[Self]) -> Option<Distance> {
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe {
            simsimd_intersect_u32(
                a.as_ptr(),
                b.as_ptr(),
                a.len() as u64size,
                b.len() as u64size,
                distance_ptr,
            )
        };
        Some(distance_value)
    }
}

impl SpatialSimilarity for f16 {
    fn cos(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }

        // Explicitly cast `*const f16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_cos_f16(a_ptr, b_ptr, a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn dot(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }

        // Explicitly cast `*const f16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_dot_f16(a_ptr, b_ptr, a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn l2sq(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }

        // Explicitly cast `*const f16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_l2sq_f16(a_ptr, b_ptr, a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn l2(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        // Explicitly cast `*const f16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_l2_f16(a_ptr, b_ptr, a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }
}

impl SpatialSimilarity for bf16 {
    fn cos(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }

        // Explicitly cast `*const bf16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_cos_bf16(a_ptr, b_ptr, a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn dot(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }

        // Explicitly cast `*const bf16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_dot_bf16(a_ptr, b_ptr, a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn l2sq(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }

        // Explicitly cast `*const bf16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_l2sq_bf16(a_ptr, b_ptr, a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn l2(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        // Explicitly cast `*const bf16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_l2_bf16(a_ptr, b_ptr, a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }
}

impl SpatialSimilarity for f32 {
    fn cos(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_cos_f32(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn dot(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_dot_f32(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn l2sq(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_l2sq_f32(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn l2(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_l2_f32(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }
}

impl SpatialSimilarity for f64 {
    fn cos(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_cos_f64(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn dot(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_dot_f64(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn l2sq(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_l2sq_f64(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn l2(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_l2_f64(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }
}

impl ProbabilitySimilarity for f16 {
    fn jensenshannon(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }

        // Explicitly cast `*const f16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_js_f16(a_ptr, b_ptr, a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn kullbackleibler(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }

        // Explicitly cast `*const f16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_kl_f16(a_ptr, b_ptr, a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }
}

impl ProbabilitySimilarity for bf16 {
    fn jensenshannon(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }

        // Explicitly cast `*const bf16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_js_bf16(a_ptr, b_ptr, a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn kullbackleibler(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }

        // Explicitly cast `*const bf16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_kl_bf16(a_ptr, b_ptr, a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }
}

impl ProbabilitySimilarity for f32 {
    fn jensenshannon(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_js_f32(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn kullbackleibler(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_kl_f32(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }
}

impl ProbabilitySimilarity for f64 {
    fn jensenshannon(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_js_f64(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }

    fn kullbackleibler(a: &[Self], b: &[Self]) -> Option<Distance> {
        if a.len() != b.len() {
            return None;
        }
        let mut distance_value: Distance = 0.0;
        let distance_ptr: *mut Distance = &mut distance_value as *mut Distance;
        unsafe { simsimd_kl_f64(a.as_ptr(), b.as_ptr(), a.len() as u64size, distance_ptr) };
        Some(distance_value)
    }
}

impl ComplexProducts for f16 {
    fn dot(a: &[Self], b: &[Self]) -> Option<ComplexProduct> {
        if a.len() != b.len() || a.len() % 2 != 0 {
            return None;
        }
        // Prepare the output array where the real and imaginary parts will be stored
        let mut product: [Distance; 2] = [0.0, 0.0];
        let product_ptr: *mut Distance = &mut product[0] as *mut _;
        // Explicitly cast `*const f16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        // The C function expects the number of complex pairs, not the total number of f16 elements
        unsafe { simsimd_dot_f16c(a_ptr, b_ptr, a.len() as u64size / 2, product_ptr) };
        Some((product[0], product[1]))
    }

    fn vdot(a: &[Self], b: &[Self]) -> Option<ComplexProduct> {
        if a.len() != b.len() || a.len() % 2 != 0 {
            return None;
        }
        let mut product: [Distance; 2] = [0.0, 0.0];
        let product_ptr: *mut Distance = &mut product[0] as *mut _;
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        // The C function expects the number of complex pairs, not the total number of f16 elements
        unsafe { simsimd_vdot_f16c(a_ptr, b_ptr, a.len() as u64size / 2, product_ptr) };
        Some((product[0], product[1]))
    }
}

impl ComplexProducts for bf16 {
    fn dot(a: &[Self], b: &[Self]) -> Option<ComplexProduct> {
        if a.len() != b.len() || a.len() % 2 != 0 {
            return None;
        }
        // Prepare the output array where the real and imaginary parts will be stored
        let mut product: [Distance; 2] = [0.0, 0.0];
        let product_ptr: *mut Distance = &mut product[0] as *mut _;
        // Explicitly cast `*const bf16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        // The C function expects the number of complex pairs, not the total number of bf16 elements
        unsafe { simsimd_dot_bf16c(a_ptr, b_ptr, a.len() as u64size / 2, product_ptr) };
        Some((product[0], product[1]))
    }

    fn vdot(a: &[Self], b: &[Self]) -> Option<ComplexProduct> {
        if a.len() != b.len() || a.len() % 2 != 0 {
            return None;
        }
        // Prepare the output array where the real and imaginary parts will be stored
        let mut product: [Distance; 2] = [0.0, 0.0];
        let product_ptr: *mut Distance = &mut product[0] as *mut _;
        // Explicitly cast `*const bf16` to `*const u16`
        let a_ptr = a.as_ptr() as *const u16;
        let b_ptr = b.as_ptr() as *const u16;
        // The C function expects the number of complex pairs, not the total number of bf16 elements
        unsafe { simsimd_vdot_bf16c(a_ptr, b_ptr, a.len() as u64size / 2, product_ptr) };
        Some((product[0], product[1]))
    }
}

impl ComplexProducts for f32 {
    fn dot(a: &[Self], b: &[Self]) -> Option<ComplexProduct> {
        if a.len() != b.len() || a.len() % 2 != 0 {
            return None;
        }
        let mut product: [Distance; 2] = [0.0, 0.0];
        let product_ptr: *mut Distance = &mut product[0] as *mut _;
        // The C function expects the number of complex pairs, not the total number of floats
        unsafe { simsimd_dot_f32c(a.as_ptr(), b.as_ptr(), a.len() as u64size / 2, product_ptr) };
        Some((product[0], product[1]))
    }

    fn vdot(a: &[Self], b: &[Self]) -> Option<ComplexProduct> {
        if a.len() != b.len() || a.len() % 2 != 0 {
            return None;
        }
        let mut product: [Distance; 2] = [0.0, 0.0];
        let product_ptr: *mut Distance = &mut product[0] as *mut _;
        // The C function expects the number of complex pairs, not the total number of floats
        unsafe { simsimd_vdot_f32c(a.as_ptr(), b.as_ptr(), a.len() as u64size / 2, product_ptr) };
        Some((product[0], product[1]))
    }
}

impl ComplexProducts for f64 {
    fn dot(a: &[Self], b: &[Self]) -> Option<ComplexProduct> {
        if a.len() != b.len() || a.len() % 2 != 0 {
            return None;
        }
        let mut product: [Distance; 2] = [0.0, 0.0];
        let product_ptr: *mut Distance = &mut product[0] as *mut _;
        // The C function expects the number of complex pairs, not the total number of floats
        unsafe { simsimd_dot_f64c(a.as_ptr(), b.as_ptr(), a.len() as u64size / 2, product_ptr) };
        Some((product[0], product[1]))
    }

    fn vdot(a: &[Self], b: &[Self]) -> Option<ComplexProduct> {
        if a.len() != b.len() || a.len() % 2 != 0 {
            return None;
        }
        let mut product: [Distance; 2] = [0.0, 0.0];
        let product_ptr: *mut Distance = &mut product[0] as *mut _;
        // The C function expects the number of complex pairs, not the total number of floats
        unsafe { simsimd_vdot_f64c(a.as_ptr(), b.as_ptr(), a.len() as u64size / 2, product_ptr) };
        Some((product[0], product[1]))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use half::bf16 as HalfBF16;
    use half::f16 as HalfF16;

    #[test]
    fn hardware_features_detection() {
        let uses_arm = capabilities::uses_neon() || capabilities::uses_sve();
        let uses_x86 = capabilities::uses_haswell()
            || capabilities::uses_skylake()
            || capabilities::uses_ice()
            || capabilities::uses_genoa()
            || capabilities::uses_sapphire()
            || capabilities::uses_turin();

        // The CPU can't simultaneously support ARM and x86 SIMD extensions
        if uses_arm {
            assert!(!uses_x86);
        }
        if uses_x86 {
            assert!(!uses_arm);
        }

        println!("- uses_neon: {}", capabilities::uses_neon());
        println!("- uses_neon_f16: {}", capabilities::uses_neon_f16());
        println!("- uses_neon_bf16: {}", capabilities::uses_neon_bf16());
        println!("- uses_neon_i8: {}", capabilities::uses_neon_i8());
        println!("- uses_sve: {}", capabilities::uses_sve());
        println!("- uses_sve_f16: {}", capabilities::uses_sve_f16());
        println!("- uses_sve_bf16: {}", capabilities::uses_sve_bf16());
        println!("- uses_sve_i8: {}", capabilities::uses_sve_i8());
        println!("- uses_haswell: {}", capabilities::uses_haswell());
        println!("- uses_skylake: {}", capabilities::uses_skylake());
        println!("- uses_ice: {}", capabilities::uses_ice());
        println!("- uses_genoa: {}", capabilities::uses_genoa());
        println!("- uses_sapphire: {}", capabilities::uses_sapphire());
        println!("- uses_turin: {}", capabilities::uses_turin());
        println!("- uses_sierra: {}", capabilities::uses_sierra());
    }

    //
    fn assert_almost_equal(left: Distance, right: Distance, tolerance: Distance) {
        let lower = right - tolerance;
        let upper = right + tolerance;

        assert!(left >= lower && left <= upper);
    }

    #[test]
    fn cos_i8() {
        let a = &[3, 97, 127];
        let b = &[3, 97, 127];

        if let Some(result) = SpatialSimilarity::cosine(a, b) {
            assert_almost_equal(0.00012027938, result, 0.01);
        }
    }

    #[test]
    fn cos_f32() {
        let a = &[1.0, 2.0, 3.0];
        let b = &[4.0, 5.0, 6.0];

        if let Some(result) = SpatialSimilarity::cosine(a, b) {
            assert_almost_equal(0.025, result, 0.01);
        }
    }

    #[test]
    fn dot_i8() {
        let a = &[1, 2, 3];
        let b = &[4, 5, 6];

        if let Some(result) = SpatialSimilarity::dot(a, b) {
            assert_almost_equal(32.0, result, 0.01);
        }
    }

    #[test]
    fn dot_f32() {
        let a = &[1.0, 2.0, 3.0];
        let b = &[4.0, 5.0, 6.0];

        if let Some(result) = SpatialSimilarity::dot(a, b) {
            assert_almost_equal(32.0, result, 0.01);
        }
    }

    #[test]
    fn dot_f32_complex() {
        // Let's consider these as complex numbers where every pair is (real, imaginary)
        let a: &[f32; 4] = &[1.0, 2.0, 3.0, 4.0]; // Represents two complex numbers: 1+2i, 3+4i
        let b: &[f32; 4] = &[5.0, 6.0, 7.0, 8.0]; // Represents two complex numbers: 5+6i, 7+8i

        if let Some((real, imag)) = ComplexProducts::dot(a, b) {
            assert_almost_equal(-18.0, real, 0.01);
            assert_almost_equal(68.0, imag, 0.01);
        }
    }

    #[test]
    fn vdot_f32_complex() {
        // Here we're assuming a similar setup to the previous test, but for the Hermitian (conjugate) dot product
        let a: &[f32; 4] = &[1.0, 2.0, 3.0, 4.0]; // Represents two complex numbers: 1+2i, 3+4i
        let b: &[f32; 4] = &[5.0, 6.0, 7.0, 8.0]; // Represents two complex numbers: 5+6i, 7+8i

        if let Some((real, imag)) = ComplexProducts::vdot(a, b) {
            assert_almost_equal(70.0, real, 0.01);
            assert_almost_equal(-8.0, imag, 0.01);
        }
    }

    #[test]
    fn l2sq_i8() {
        let a = &[1, 2, 3];
        let b = &[4, 5, 6];

        if let Some(result) = SpatialSimilarity::sqeuclidean(a, b) {
            assert_almost_equal(27.0, result, 0.01);
        }
    }

    #[test]
    fn l2sq_f32() {
        let a = &[1.0, 2.0, 3.0];
        let b = &[4.0, 5.0, 6.0];

        if let Some(result) = SpatialSimilarity::sqeuclidean(a, b) {
            assert_almost_equal(27.0, result, 0.01);
        }
    }

    #[test]
    fn l2_f32() {
        let a: &[f32; 3] = &[1.0, 2.0, 3.0];
        let b: &[f32; 3] = &[4.0, 5.0, 6.0];
        if let Some(result) = SpatialSimilarity::euclidean(a, b) {
            assert_almost_equal(5.2, result, 0.01);
        }
    }

    #[test]
    fn l2_f64() {
        let a: &[f64; 3] = &[1.0, 2.0, 3.0];
        let b: &[f64; 3] = &[4.0, 5.0, 6.0];
        if let Some(result) = SpatialSimilarity::euclidean(a, b) {
            assert_almost_equal(5.2, result, 0.01);
        }
    }

    #[test]
    fn l2_f16() {
        let a_half: Vec<HalfF16> = vec![1.0, 2.0, 3.0]
            .iter()
            .map(|&x| HalfF16::from_f32(x))
            .collect();
        let b_half: Vec<HalfF16> = vec![4.0, 5.0, 6.0]
            .iter()
            .map(|&x| HalfF16::from_f32(x))
            .collect();

        let a_simsimd: &[f16] =
            unsafe { std::slice::from_raw_parts(a_half.as_ptr() as *const f16, a_half.len()) };
        let b_simsimd: &[f16] =
            unsafe { std::slice::from_raw_parts(b_half.as_ptr() as *const f16, b_half.len()) };

        if let Some(result) = SpatialSimilarity::euclidean(&a_simsimd, &b_simsimd) {
            assert_almost_equal(5.2, result, 0.01);
        }
    }

    #[test]
    fn l2_i8() {
        let a = &[1, 2, 3];
        let b = &[4, 5, 6];

        if let Some(result) = SpatialSimilarity::euclidean(a, b) {
            assert_almost_equal(5.2, result, 0.01);
        }
    }
    // Adding new tests for bit-level distances
    #[test]
    fn hamming_u8() {
        let a = &[0b01010101, 0b11110000, 0b10101010];
        let b = &[0b01010101, 0b11110000, 0b10101010];

        if let Some(result) = BinarySimilarity::hamming(a, b) {
            assert_almost_equal(0.0, result, 0.01);
        }
    }

    #[test]
    fn jaccard_u8() {
        // For binary data, treat each byte as a set of bits
        let a = &[0b11110000, 0b00001111, 0b10101010];
        let b = &[0b11110000, 0b00001111, 0b01010101];

        if let Some(result) = BinarySimilarity::jaccard(a, b) {
            assert_almost_equal(0.5, result, 0.01);
        }
    }

    // Adding new tests for probability similarities
    #[test]
    fn js_f32() {
        let a: &[f32; 3] = &[0.1, 0.9, 0.0];
        let b: &[f32; 3] = &[0.2, 0.8, 0.0];

        if let Some(result) = ProbabilitySimilarity::jensenshannon(a, b) {
            assert_almost_equal(0.099, result, 0.01);
        }
    }

    #[test]
    fn kl_f32() {
        let a: &[f32; 3] = &[0.1, 0.9, 0.0];
        let b: &[f32; 3] = &[0.2, 0.8, 0.0];

        if let Some(result) = ProbabilitySimilarity::kullbackleibler(a, b) {
            assert_almost_equal(0.036, result, 0.01);
        }
    }

    #[test]
    fn cos_f16_same() {
        // Assuming these u16 values represent f16 bit patterns, and they are identical
        let a_u16: &[u16] = &[15360, 16384, 17408]; // Corresponding to some f16 values
        let b_u16: &[u16] = &[15360, 16384, 17408]; // Same as above for simplicity

        // Reinterpret cast from &[u16] to &[f16]
        let a_f16: &[f16] =
            unsafe { std::slice::from_raw_parts(a_u16.as_ptr() as *const f16, a_u16.len()) };
        let b_f16: &[f16] =
            unsafe { std::slice::from_raw_parts(b_u16.as_ptr() as *const f16, b_u16.len()) };

        if let Some(result) = SpatialSimilarity::cosine(a_f16, b_f16) {
            assert_almost_equal(0.0, result, 0.01);
        }
    }

    #[test]
    fn cos_bf16_same() {
        // Assuming these u16 values represent bf16 bit patterns, and they are identical
        let a_u16: &[u16] = &[15360, 16384, 17408]; // Corresponding to some bf16 values
        let b_u16: &[u16] = &[15360, 16384, 17408]; // Same as above for simplicity

        // Reinterpret cast from &[u16] to &[bf16]
        let a_bf16: &[bf16] =
            unsafe { std::slice::from_raw_parts(a_u16.as_ptr() as *const bf16, a_u16.len()) };
        let b_bf16: &[bf16] =
            unsafe { std::slice::from_raw_parts(b_u16.as_ptr() as *const bf16, b_u16.len()) };

        if let Some(result) = SpatialSimilarity::cosine(a_bf16, b_bf16) {
            assert_almost_equal(0.0, result, 0.01);
        }
    }

    #[test]
    fn cos_f16_interop() {
        let a_half: Vec<HalfF16> = vec![1.0, 2.0, 3.0]
            .iter()
            .map(|&x| HalfF16::from_f32(x))
            .collect();
        let b_half: Vec<HalfF16> = vec![4.0, 5.0, 6.0]
            .iter()
            .map(|&x| HalfF16::from_f32(x))
            .collect();

        // SAFETY: This is safe as long as the memory representations are guaranteed to be identical,
        // which they are due to both being #[repr(transparent)] wrappers around u16.
        let a_simsimd: &[f16] =
            unsafe { std::slice::from_raw_parts(a_half.as_ptr() as *const f16, a_half.len()) };
        let b_simsimd: &[f16] =
            unsafe { std::slice::from_raw_parts(b_half.as_ptr() as *const f16, b_half.len()) };

        // Use the reinterpret-casted slices with your SpatialSimilarity implementation
        if let Some(result) = SpatialSimilarity::cosine(a_simsimd, b_simsimd) {
            assert_almost_equal(0.025, result, 0.01);
        }
    }

    #[test]
    fn cos_bf16_interop() {
        let a_half: Vec<HalfBF16> = vec![1.0, 2.0, 3.0]
            .iter()
            .map(|&x| HalfBF16::from_f32(x))
            .collect();
        let b_half: Vec<HalfBF16> = vec![4.0, 5.0, 6.0]
            .iter()
            .map(|&x| HalfBF16::from_f32(x))
            .collect();

        // SAFETY: This is safe as long as the memory representations are guaranteed to be identical,
        // which they are due to both being #[repr(transparent)] wrappers around u16.
        let a_simsimd: &[bf16] =
            unsafe { std::slice::from_raw_parts(a_half.as_ptr() as *const bf16, a_half.len()) };
        let b_simsimd: &[bf16] =
            unsafe { std::slice::from_raw_parts(b_half.as_ptr() as *const bf16, b_half.len()) };

        // Use the reinterpret-casted slices with your SpatialSimilarity implementation
        if let Some(result) = SpatialSimilarity::cosine(a_simsimd, b_simsimd) {
            assert_almost_equal(0.025, result, 0.01);
        }
    }

    #[test]
    fn intersect_u16() {
        {
            let a_u16: &[u16] = &[153, 16384, 17408];
            let b_u16: &[u16] = &[7408, 15360, 16384];

            if let Some(result) = Sparse::intersect(a_u16, b_u16) {
                assert_almost_equal(1.0, result, 0.0001);
            }
        }

        {
            let a_u16: &[u16] = &[8, 153, 11638];
            let b_u16: &[u16] = &[7408, 15360, 16384];

            if let Some(result) = Sparse::intersect(a_u16, b_u16) {
                assert_almost_equal(0.0, result, 0.0001);
            }
        }
    }

    #[test]
    fn intersect_u32() {
        {
            let a_u32: &[u32] = &[11, 153];
            let b_u32: &[u32] = &[11, 153, 7408, 16384];

            if let Some(result) = Sparse::intersect(a_u32, b_u32) {
                assert_almost_equal(2.0, result, 0.0001);
            }
        }

        {
            let a_u32: &[u32] = &[153, 7408, 11638];
            let b_u32: &[u32] = &[153, 7408, 11638];

            if let Some(result) = Sparse::intersect(a_u32, b_u32) {
                assert_almost_equal(3.0, result, 0.0001);
            }
        }
    }

    /// Reference implementation of set intersection using Rust's standard library
    fn reference_intersect<T: Ord>(a: &[T], b: &[T]) -> usize {
        let mut a_iter = a.iter();
        let mut b_iter = b.iter();
        let mut a_current = a_iter.next();
        let mut b_current = b_iter.next();
        let mut count = 0;

        while let (Some(a_val), Some(b_val)) = (a_current, b_current) {
            match a_val.cmp(b_val) {
                core::cmp::Ordering::Less => a_current = a_iter.next(),
                core::cmp::Ordering::Greater => b_current = b_iter.next(),
                core::cmp::Ordering::Equal => {
                    count += 1;
                    a_current = a_iter.next();
                    b_current = b_iter.next();
                }
            }
        }
        count
    }

    /// Generate test arrays with various sizes and patterns for intersection testing
    /// Includes empty, small, medium, large arrays with different overlap characteristics
    fn generate_intersection_test_arrays<T>() -> Vec<Vec<T>>
    where
        T: core::convert::TryFrom<u32> + Copy,
        <T as core::convert::TryFrom<u32>>::Error: core::fmt::Debug,
    {
        vec![
            // Empty array
            vec![],
            // Single element
            vec![T::try_from(42).unwrap()],
            // Very small arrays (< 16 elements) - tests serial fallback
            vec![
                T::try_from(1).unwrap(),
                T::try_from(5).unwrap(),
                T::try_from(10).unwrap(),
            ],
            vec![
                T::try_from(2).unwrap(),
                T::try_from(4).unwrap(),
                T::try_from(6).unwrap(),
                T::try_from(8).unwrap(),
                T::try_from(10).unwrap(),
                T::try_from(12).unwrap(),
                T::try_from(14).unwrap(),
            ],
            // Small arrays (< 32 elements) - boundary case for Turin
            (0..14).map(|x| T::try_from(x * 10).unwrap()).collect(),
            (5..20).map(|x| T::try_from(x * 10).unwrap()).collect(),
            // Medium arrays (32-64 elements) - tests one or two SIMD iterations
            (0..40).map(|x| T::try_from(x * 2).unwrap()).collect(),
            (10..50).map(|x| T::try_from(x * 2).unwrap()).collect(), // 50% overlap with previous
            (0..45).map(|x| T::try_from(x * 3).unwrap()).collect(),  // Different stride
            // Large arrays (> 64 elements) - tests main SIMD loop
            (0..100).map(|x| T::try_from(x * 2).unwrap()).collect(),
            (50..150).map(|x| T::try_from(x * 2).unwrap()).collect(), // 50% overlap
            (0..100).map(|x| T::try_from(x * 5).unwrap()).collect(),  // Sparse overlap
            (0..150)
                .filter(|x| x % 7 == 0)
                .map(|x| T::try_from(x).unwrap())
                .collect(),
            // Very large arrays (> 256 elements) - stress test
            (0..500).map(|x| T::try_from(x * 3).unwrap()).collect(),
            (100..600).map(|x| T::try_from(x * 3).unwrap()).collect(), // Large overlap
            (0..600).map(|x| T::try_from(x * 7).unwrap()).collect(),   // Minimal overlap
            // Edge cases: no overlap at all
            (0..50).map(|x| T::try_from(x * 2).unwrap()).collect(),
            (1000..1050).map(|x| T::try_from(x * 2).unwrap()).collect(), // Completely disjoint
            // Dense arrays at boundaries
            (0..16).map(|x| T::try_from(x).unwrap()).collect(), // Exactly 16 elements
            (0..32).map(|x| T::try_from(x).unwrap()).collect(), // Exactly 32 elements
            (0..64).map(|x| T::try_from(x).unwrap()).collect(), // Exactly 64 elements
        ]
    }

    #[test]
    fn intersect_u32_comprehensive() {
        let test_arrays: Vec<Vec<u32>> = generate_intersection_test_arrays();

        for (i, array_a) in test_arrays.iter().enumerate() {
            for (j, array_b) in test_arrays.iter().enumerate() {
                let expected = reference_intersect(array_a, array_b);
                let result =
                    Sparse::intersect(array_a.as_slice(), array_b.as_slice()).unwrap() as usize;

                assert_eq!(
                    expected,
                    result,
                    "Intersection mismatch for arrays[{}] (len={}) and arrays[{}] (len={})",
                    i,
                    array_a.len(),
                    j,
                    array_b.len()
                );
            }
        }
    }

    #[test]
    fn intersect_u16_comprehensive() {
        let test_arrays: Vec<Vec<u16>> = generate_intersection_test_arrays();

        for (i, array_a) in test_arrays.iter().enumerate() {
            for (j, array_b) in test_arrays.iter().enumerate() {
                let expected = reference_intersect(array_a, array_b);
                let result =
                    Sparse::intersect(array_a.as_slice(), array_b.as_slice()).unwrap() as usize;

                assert_eq!(
                    expected,
                    result,
                    "Intersection mismatch for arrays[{}] (len={}) and arrays[{}] (len={})",
                    i,
                    array_a.len(),
                    j,
                    array_b.len()
                );
            }
        }
    }

    #[test]
    fn intersect_edge_cases() {
        // Test empty arrays
        let empty: &[u32] = &[];
        let non_empty: &[u32] = &[1, 2, 3];
        assert_eq!(Sparse::intersect(empty, empty), Some(0.0));
        assert_eq!(Sparse::intersect(empty, non_empty), Some(0.0));
        assert_eq!(Sparse::intersect(non_empty, empty), Some(0.0));

        // Test single element matches
        assert_eq!(Sparse::intersect(&[42u32], &[42u32]), Some(1.0));
        assert_eq!(Sparse::intersect(&[42u32], &[43u32]), Some(0.0));

        // Test no overlap
        let a: &[u32] = &[1, 2, 3, 4, 5];
        let b: &[u32] = &[10, 20, 30, 40, 50];
        assert_eq!(Sparse::intersect(a, b), Some(0.0));

        // Test complete overlap
        let c: &[u32] = &[10, 20, 30, 40, 50];
        assert_eq!(Sparse::intersect(c, c), Some(5.0));

        // Test one element at boundary (exactly at 16, 32, 64 element boundaries)
        let boundary_16: Vec<u32> = (0..16).collect();
        let boundary_32: Vec<u32> = (0..32).collect();
        let boundary_64: Vec<u32> = (0..64).collect();

        assert_eq!(Sparse::intersect(&boundary_16, &boundary_16), Some(16.0));
        assert_eq!(Sparse::intersect(&boundary_32, &boundary_32), Some(32.0));
        assert_eq!(Sparse::intersect(&boundary_64, &boundary_64), Some(64.0));

        // Test partial overlap at boundaries
        let first_half: Vec<u32> = (0..32).collect();
        let second_half: Vec<u32> = (16..48).collect();
        assert_eq!(Sparse::intersect(&first_half, &second_half), Some(16.0));
    }

    #[test]
    fn f16_arithmetic() {
        let a = f16::from_f32(3.5);
        let b = f16::from_f32(2.0);

        // Test basic arithmetic
        assert!((a + b).to_f32() - 5.5 < 0.01);
        assert!((a - b).to_f32() - 1.5 < 0.01);
        assert!((a * b).to_f32() - 7.0 < 0.01);
        assert!((a / b).to_f32() - 1.75 < 0.01);
        assert!((-a).to_f32() + 3.5 < 0.01);

        // Test constants
        assert!(f16::ZERO.to_f32() == 0.0);
        assert!((f16::ONE.to_f32() - 1.0).abs() < 0.01);
        assert!((f16::NEG_ONE.to_f32() + 1.0).abs() < 0.01);

        // Test comparisons
        assert!(a > b);
        assert!(!(a < b));
        assert!(a == a);

        // Test utility methods
        assert!((-a).abs().to_f32() - 3.5 < 0.01);
        assert!(a.is_finite());
        assert!(!a.is_nan());
        assert!(!a.is_infinite());
    }

    #[test]
    fn bf16_arithmetic() {
        let a = bf16::from_f32(3.5);
        let b = bf16::from_f32(2.0);

        // Test basic arithmetic
        assert!((a + b).to_f32() - 5.5 < 0.1);
        assert!((a - b).to_f32() - 1.5 < 0.1);
        assert!((a * b).to_f32() - 7.0 < 0.1);
        assert!((a / b).to_f32() - 1.75 < 0.1);
        assert!((-a).to_f32() + 3.5 < 0.1);

        // Test constants
        assert!(bf16::ZERO.to_f32() == 0.0);
        assert!((bf16::ONE.to_f32() - 1.0).abs() < 0.01);
        assert!((bf16::NEG_ONE.to_f32() + 1.0).abs() < 0.01);

        // Test comparisons
        assert!(a > b);
        assert!(!(a < b));
        assert!(a == a);

        // Test utility methods
        assert!((-a).abs().to_f32() - 3.5 < 0.1);
        assert!(a.is_finite());
        assert!(!a.is_nan());
        assert!(!a.is_infinite());
    }

    #[test]
    fn bf16_dot() {
        let brain_a: Vec<bf16> = vec![1.0, 2.0, 3.0, 1.0, 2.0]
            .iter()
            .map(|&x| bf16::from_f32(x))
            .collect();
        let brain_b: Vec<bf16> = vec![4.0, 5.0, 6.0, 4.0, 5.0]
            .iter()
            .map(|&x| bf16::from_f32(x))
            .collect();
        if let Some(result) = <bf16 as SpatialSimilarity>::dot(&brain_a, &brain_b) {
            assert_eq!(46.0, result);
        }
    }
}