1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
/**
* @file binary.h
* @brief SIMD-accelerated Binary Similarity Measures.
* @author Ash Vardanian
* @date July 1, 2023
*
* Contains:
* - Bit-level Hamming distance
* - Bit-level Jaccard distance (Tanimoto coefficient)
* - TODO: Hamming distance for integer vectors - `u16`, `u32`
*
* For hardware architectures:
* - Arm: NEON, SVE
* - x86: Haswell, Ice Lake
*
* The hardest part of optimizing binary similarity measures is the population count operation.
* It's natively supported by almost every instruction set, but the throughput and latency can
* be suboptimal. There are several ways to optimize this operation:
*
* - Lookup tables, mostly using nibbles (4-bit lookups)
* - Harley-Seal population counts: https://arxiv.org/pdf/1611.07612
*
* On binary vectors, when computing Jaccard distance we can clearly see how the CPU struggles
* to compute that many population counts. There are several instructions we should keep in mind
* for future optimizations:
*
* - `_mm512_popcnt_epi64` maps to `VPOPCNTQ (ZMM, K, ZMM)`:
* - On Ice Lake: 3 cycles latency, ports: 1*p5
* - On Genoa: 2 cycles latency, ports: 1*FP01
* - `_mm512_shuffle_epi8` maps to `VPSHUFB (ZMM, ZMM, ZMM)`:
* - On Ice Lake: 1 cycles latency, ports: 1*p5
* - On Genoa: 2 cycles latency, ports: 1*FP12
* - `_mm512_sad_epu8` maps to `VPSADBW (ZMM, ZMM, ZMM)`:
* - On Ice Lake: 3 cycles latency, ports: 1*p5
* - On Zen4: 3 cycles latency, ports: 1*FP01
* - `_mm512_tertiarylogic_epi64` maps to `VPTERNLOGQ (ZMM, ZMM, ZMM, I8)`:
* - On Ice Lake: 1 cycles latency, ports: 1*p05
* - On Zen4: 1 cycles latency, ports: 1*FP0123
* - `_mm512_gf2p8mul_epi8` maps to `VPGF2P8AFFINEQB (ZMM, ZMM, ZMM)`:
* - On Ice Lake: 5 cycles latency, ports: 1*p0
* - On Zen4: 3 cycles latency, ports: 1*FP01
*
* x86 intrinsics: https://www.intel.com/content/www/us/en/docs/intrinsics-guide/
* Arm intrinsics: https://developer.arm.com/architectures/instruction-sets/intrinsics/
* SSE POPCOUNT experiments by Wojciech Muła: https://github.com/WojciechMula/sse-popcount
* R&D progress tracker: https://github.com/ashvardanian/SimSIMD/pull/138
*/
#ifndef SIMSIMD_BINARY_H
#define SIMSIMD_BINARY_H
#include "types.h"
#ifdef __cplusplus
extern "C" {
#endif
// clang-format off
/* Serial backends for bitsets and integers. */
SIMSIMD_PUBLIC void simsimd_hamming_b8_serial(simsimd_b8_t const* a, simsimd_b8_t const* b, simsimd_size_t n_words, simsimd_distance_t* distance);
SIMSIMD_PUBLIC void simsimd_jaccard_b8_serial(simsimd_b8_t const* a, simsimd_b8_t const* b, simsimd_size_t n_words, simsimd_distance_t* distance);
/* Arm NEON backend for bitsets and integers. */
SIMSIMD_PUBLIC void simsimd_hamming_b8_neon(simsimd_b8_t const* a, simsimd_b8_t const* b, simsimd_size_t n_words, simsimd_distance_t* distance);
SIMSIMD_PUBLIC void simsimd_jaccard_b8_neon(simsimd_b8_t const* a, simsimd_b8_t const* b, simsimd_size_t n_words, simsimd_distance_t* distance);
/* Arm SVE backend for bitsets and integers. */
SIMSIMD_PUBLIC void simsimd_hamming_b8_sve(simsimd_b8_t const* a, simsimd_b8_t const* b, simsimd_size_t n_words, simsimd_distance_t* distance);
SIMSIMD_PUBLIC void simsimd_jaccard_b8_sve(simsimd_b8_t const* a, simsimd_b8_t const* b, simsimd_size_t n_words, simsimd_distance_t* distance);
/* x86 AVX2 backend for bitsets and integers for Intel Haswell CPUs and newer, needs only POPCNT extensions. */
SIMSIMD_PUBLIC void simsimd_hamming_b8_haswell(simsimd_b8_t const* a, simsimd_b8_t const* b, simsimd_size_t n_words, simsimd_distance_t* distance);
SIMSIMD_PUBLIC void simsimd_jaccard_b8_haswell(simsimd_b8_t const* a, simsimd_b8_t const* b, simsimd_size_t n_words, simsimd_distance_t* distance);
/* x86 AVX512 backend for bitsets and integers for Intel Ice Lake CPUs and newer, using VPOPCNTDQ extensions. */
SIMSIMD_PUBLIC void simsimd_hamming_b8_ice(simsimd_b8_t const* a, simsimd_b8_t const* b, simsimd_size_t n_words, simsimd_distance_t* distance);
SIMSIMD_PUBLIC void simsimd_jaccard_b8_ice(simsimd_b8_t const* a, simsimd_b8_t const* b, simsimd_size_t n_words, simsimd_distance_t* distance);
// clang-format on
SIMSIMD_PUBLIC unsigned char simsimd_popcount_b8(simsimd_b8_t x) {
static unsigned char lookup_table[] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, //
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8};
return lookup_table[x];
}
SIMSIMD_PUBLIC void simsimd_hamming_b8_serial(simsimd_b8_t const *a, simsimd_b8_t const *b, simsimd_size_t n_words,
simsimd_distance_t *result) {
simsimd_u32_t differences = 0;
for (simsimd_size_t i = 0; i != n_words; ++i) differences += simsimd_popcount_b8(a[i] ^ b[i]);
*result = differences;
}
SIMSIMD_PUBLIC void simsimd_jaccard_b8_serial(simsimd_b8_t const *a, simsimd_b8_t const *b, simsimd_size_t n_words,
simsimd_distance_t *result) {
simsimd_u32_t intersection = 0, union_ = 0;
for (simsimd_size_t i = 0; i != n_words; ++i)
intersection += simsimd_popcount_b8(a[i] & b[i]), union_ += simsimd_popcount_b8(a[i] | b[i]);
*result = (union_ != 0) ? 1 - (simsimd_f64_t)intersection / (simsimd_f64_t)union_ : 1;
}
#if _SIMSIMD_TARGET_ARM
#if SIMSIMD_TARGET_NEON
#pragma GCC push_options
#pragma GCC target("arch=armv8-a+simd")
#pragma clang attribute push(__attribute__((target("arch=armv8-a+simd"))), apply_to = function)
SIMSIMD_INTERNAL simsimd_u32_t _simsimd_reduce_u8x16_neon(uint8x16_t vec) {
// Split the vector into two halves and widen to `uint16x8_t`
uint16x8_t low_half = vmovl_u8(vget_low_u8(vec)); // widen lower 8 elements
uint16x8_t high_half = vmovl_u8(vget_high_u8(vec)); // widen upper 8 elements
// Sum the widened halves
uint16x8_t sum16 = vaddq_u16(low_half, high_half);
// Now reduce the `uint16x8_t` to a single `simsimd_u32_t`
uint32x4_t sum32 = vpaddlq_u16(sum16); // pairwise add into 32-bit integers
uint64x2_t sum64 = vpaddlq_u32(sum32); // pairwise add into 64-bit integers
simsimd_u32_t final_sum = vaddvq_u64(sum64); // final horizontal add to 32-bit result
return final_sum;
}
SIMSIMD_PUBLIC void simsimd_hamming_b8_neon(simsimd_b8_t const *a, simsimd_b8_t const *b, simsimd_size_t n_words,
simsimd_distance_t *result) {
simsimd_i32_t differences = 0;
simsimd_size_t i = 0;
// In each 8-bit word we may have up to 8 differences.
// So for up-to 31 cycles (31 * 16 = 496 word-dimensions = 3968 bits)
// we can aggregate the differences into a `uint8x16_t` vector,
// where each component will be up-to 255.
while (i + 16 <= n_words) {
uint8x16_t differences_cycle_vec = vdupq_n_u8(0);
for (simsimd_size_t cycle = 0; cycle < 31 && i + 16 <= n_words; ++cycle, i += 16) {
uint8x16_t a_vec = vld1q_u8(a + i);
uint8x16_t b_vec = vld1q_u8(b + i);
uint8x16_t xor_count_vec = vcntq_u8(veorq_u8(a_vec, b_vec));
differences_cycle_vec = vaddq_u8(differences_cycle_vec, xor_count_vec);
}
differences += _simsimd_reduce_u8x16_neon(differences_cycle_vec);
}
// Handle the tail
for (; i != n_words; ++i) differences += simsimd_popcount_b8(a[i] ^ b[i]);
*result = differences;
}
SIMSIMD_PUBLIC void simsimd_jaccard_b8_neon(simsimd_b8_t const *a, simsimd_b8_t const *b, simsimd_size_t n_words,
simsimd_distance_t *result) {
simsimd_i32_t intersection = 0, union_ = 0;
simsimd_size_t i = 0;
// In each 8-bit word we may have up to 8 intersections/unions.
// So for up-to 31 cycles (31 * 16 = 496 word-dimensions = 3968 bits)
// we can aggregate the intersections/unions into a `uint8x16_t` vector,
// where each component will be up-to 255.
while (i + 16 <= n_words) {
uint8x16_t intersections_cycle_vec = vdupq_n_u8(0);
uint8x16_t unions_cycle_vec = vdupq_n_u8(0);
for (simsimd_size_t cycle = 0; cycle < 31 && i + 16 <= n_words; ++cycle, i += 16) {
uint8x16_t a_vec = vld1q_u8(a + i);
uint8x16_t b_vec = vld1q_u8(b + i);
uint8x16_t and_count_vec = vcntq_u8(vandq_u8(a_vec, b_vec));
uint8x16_t or_count_vec = vcntq_u8(vorrq_u8(a_vec, b_vec));
intersections_cycle_vec = vaddq_u8(intersections_cycle_vec, and_count_vec);
unions_cycle_vec = vaddq_u8(unions_cycle_vec, or_count_vec);
}
intersection += _simsimd_reduce_u8x16_neon(intersections_cycle_vec);
union_ += _simsimd_reduce_u8x16_neon(unions_cycle_vec);
}
// Handle the tail
for (; i != n_words; ++i)
intersection += simsimd_popcount_b8(a[i] & b[i]), union_ += simsimd_popcount_b8(a[i] | b[i]);
*result = (union_ != 0) ? 1 - (simsimd_f64_t)intersection / (simsimd_f64_t)union_ : 1;
}
#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_NEON
#if SIMSIMD_TARGET_SVE
#pragma GCC push_options
#pragma GCC target("arch=armv8.2-a+sve")
#pragma clang attribute push(__attribute__((target("arch=armv8.2-a+sve"))), apply_to = function)
SIMSIMD_PUBLIC void simsimd_hamming_b8_sve(simsimd_b8_t const *a, simsimd_b8_t const *b, simsimd_size_t n_words,
simsimd_distance_t *result) {
// On very small register sizes, NEON is at least as fast as SVE.
simsimd_size_t const words_per_register = svcntb();
if (words_per_register <= 32) {
simsimd_hamming_b8_neon(a, b, n_words, result);
return;
}
// On larger register sizes, SVE is faster.
simsimd_size_t i = 0, cycle = 0;
simsimd_i32_t differences = 0;
svuint8_t differences_cycle_vec = svdup_n_u8(0);
svbool_t const all_vec = svptrue_b8();
while (i < n_words) {
do {
svbool_t pg_vec = svwhilelt_b8((unsigned int)i, (unsigned int)n_words);
svuint8_t a_vec = svld1_u8(pg_vec, a + i);
svuint8_t b_vec = svld1_u8(pg_vec, b + i);
differences_cycle_vec =
svadd_u8_z(all_vec, differences_cycle_vec, svcnt_u8_x(all_vec, sveor_u8_m(all_vec, a_vec, b_vec)));
i += words_per_register;
++cycle;
} while (i < n_words && cycle < 31);
differences += svaddv_u8(all_vec, differences_cycle_vec);
differences_cycle_vec = svdup_n_u8(0);
cycle = 0; // Reset the cycle counter.
}
*result = differences;
}
SIMSIMD_PUBLIC void simsimd_jaccard_b8_sve(simsimd_b8_t const *a, simsimd_b8_t const *b, simsimd_size_t n_words,
simsimd_distance_t *result) {
// On very small register sizes, NEON is at least as fast as SVE.
simsimd_size_t const words_per_register = svcntb();
if (words_per_register <= 32) {
simsimd_jaccard_b8_neon(a, b, n_words, result);
return;
}
// On larger register sizes, SVE is faster.
simsimd_size_t i = 0, cycle = 0;
simsimd_i32_t intersection = 0, union_ = 0;
svuint8_t intersection_cycle_vec = svdup_n_u8(0);
svuint8_t union_cycle_vec = svdup_n_u8(0);
svbool_t const all_vec = svptrue_b8();
while (i < n_words) {
do {
svbool_t pg_vec = svwhilelt_b8((unsigned int)i, (unsigned int)n_words);
svuint8_t a_vec = svld1_u8(pg_vec, a + i);
svuint8_t b_vec = svld1_u8(pg_vec, b + i);
intersection_cycle_vec =
svadd_u8_z(all_vec, intersection_cycle_vec, svcnt_u8_x(all_vec, svand_u8_m(all_vec, a_vec, b_vec)));
union_cycle_vec =
svadd_u8_z(all_vec, union_cycle_vec, svcnt_u8_x(all_vec, svorr_u8_m(all_vec, a_vec, b_vec)));
i += words_per_register;
++cycle;
} while (i < n_words && cycle < 31);
intersection += svaddv_u8(all_vec, intersection_cycle_vec);
intersection_cycle_vec = svdup_n_u8(0);
union_ += svaddv_u8(all_vec, union_cycle_vec);
union_cycle_vec = svdup_n_u8(0);
cycle = 0; // Reset the cycle counter.
}
*result = (union_ != 0) ? 1 - (simsimd_f64_t)intersection / (simsimd_f64_t)union_ : 1;
}
#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_SVE
#endif // _SIMSIMD_TARGET_ARM
#if _SIMSIMD_TARGET_X86
#if SIMSIMD_TARGET_ICE
#pragma GCC push_options
#pragma GCC target("avx2", "avx512f", "avx512vl", "bmi2", "avx512bw", "avx512vpopcntdq")
#pragma clang attribute push(__attribute__((target("avx2,avx512f,avx512vl,bmi2,avx512bw,avx512vpopcntdq"))), \
apply_to = function)
SIMSIMD_PUBLIC void simsimd_hamming_b8_ice(simsimd_b8_t const *a, simsimd_b8_t const *b, simsimd_size_t n_words,
simsimd_distance_t *result) {
simsimd_size_t xor_count;
// It's harder to squeeze out performance from tiny representations, so we unroll the loops for binary metrics.
if (n_words <= 64) { // Up to 512 bits.
__mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n_words);
__m512i a_vec = _mm512_maskz_loadu_epi8(mask, a);
__m512i b_vec = _mm512_maskz_loadu_epi8(mask, b);
__m512i xor_count_vec = _mm512_popcnt_epi64(_mm512_xor_si512(a_vec, b_vec));
xor_count = _mm512_reduce_add_epi64(xor_count_vec);
}
else if (n_words <= 128) { // Up to 1024 bits.
__mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n_words - 64);
__m512i a1_vec = _mm512_loadu_epi8(a);
__m512i b1_vec = _mm512_loadu_epi8(b);
__m512i a2_vec = _mm512_maskz_loadu_epi8(mask, a + 64);
__m512i b2_vec = _mm512_maskz_loadu_epi8(mask, b + 64);
__m512i xor1_count_vec = _mm512_popcnt_epi64(_mm512_xor_si512(a1_vec, b1_vec));
__m512i xor2_count_vec = _mm512_popcnt_epi64(_mm512_xor_si512(a2_vec, b2_vec));
xor_count = _mm512_reduce_add_epi64(_mm512_add_epi64(xor2_count_vec, xor1_count_vec));
}
else if (n_words <= 196) { // Up to 1568 bits.
__mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n_words - 128);
__m512i a1_vec = _mm512_loadu_epi8(a);
__m512i b1_vec = _mm512_loadu_epi8(b);
__m512i a2_vec = _mm512_loadu_epi8(a + 64);
__m512i b2_vec = _mm512_loadu_epi8(b + 64);
__m512i a3_vec = _mm512_maskz_loadu_epi8(mask, a + 128);
__m512i b3_vec = _mm512_maskz_loadu_epi8(mask, b + 128);
__m512i xor1_count_vec = _mm512_popcnt_epi64(_mm512_xor_si512(a1_vec, b1_vec));
__m512i xor2_count_vec = _mm512_popcnt_epi64(_mm512_xor_si512(a2_vec, b2_vec));
__m512i xor3_count_vec = _mm512_popcnt_epi64(_mm512_xor_si512(a3_vec, b3_vec));
xor_count =
_mm512_reduce_add_epi64(_mm512_add_epi64(xor3_count_vec, _mm512_add_epi64(xor2_count_vec, xor1_count_vec)));
}
else if (n_words <= 256) { // Up to 2048 bits.
__mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n_words - 192);
__m512i a1_vec = _mm512_loadu_epi8(a);
__m512i b1_vec = _mm512_loadu_epi8(b);
__m512i a2_vec = _mm512_loadu_epi8(a + 64);
__m512i b2_vec = _mm512_loadu_epi8(b + 64);
__m512i a3_vec = _mm512_loadu_epi8(a + 128);
__m512i b3_vec = _mm512_loadu_epi8(b + 128);
__m512i a4_vec = _mm512_maskz_loadu_epi8(mask, a + 192);
__m512i b4_vec = _mm512_maskz_loadu_epi8(mask, b + 192);
__m512i xor1_count_vec = _mm512_popcnt_epi64(_mm512_xor_si512(a1_vec, b1_vec));
__m512i xor2_count_vec = _mm512_popcnt_epi64(_mm512_xor_si512(a2_vec, b2_vec));
__m512i xor3_count_vec = _mm512_popcnt_epi64(_mm512_xor_si512(a3_vec, b3_vec));
__m512i xor4_count_vec = _mm512_popcnt_epi64(_mm512_xor_si512(a4_vec, b4_vec));
xor_count = _mm512_reduce_add_epi64(_mm512_add_epi64(_mm512_add_epi64(xor4_count_vec, xor3_count_vec),
_mm512_add_epi64(xor2_count_vec, xor1_count_vec)));
}
else {
__m512i xor_count_vec = _mm512_setzero_si512();
__m512i a_vec, b_vec;
simsimd_hamming_b8_ice_cycle:
if (n_words < 64) {
__mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n_words);
a_vec = _mm512_maskz_loadu_epi8(mask, a);
b_vec = _mm512_maskz_loadu_epi8(mask, b);
n_words = 0;
}
else {
a_vec = _mm512_loadu_epi8(a);
b_vec = _mm512_loadu_epi8(b);
a += 64, b += 64, n_words -= 64;
}
__m512i xor_vec = _mm512_xor_si512(a_vec, b_vec);
xor_count_vec = _mm512_add_epi64(xor_count_vec, _mm512_popcnt_epi64(xor_vec));
if (n_words) goto simsimd_hamming_b8_ice_cycle;
xor_count = _mm512_reduce_add_epi64(xor_count_vec);
}
*result = xor_count;
}
SIMSIMD_PUBLIC void simsimd_jaccard_b8_ice(simsimd_b8_t const *a, simsimd_b8_t const *b, simsimd_size_t n_words,
simsimd_distance_t *result) {
simsimd_size_t intersection = 0, union_ = 0;
// It's harder to squeeze out performance from tiny representations, so we unroll the loops for binary metrics.
if (n_words <= 64) { // Up to 512 bits.
__mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n_words);
__m512i a_vec = _mm512_maskz_loadu_epi8(mask, a);
__m512i b_vec = _mm512_maskz_loadu_epi8(mask, b);
__m512i and_count_vec = _mm512_popcnt_epi64(_mm512_and_si512(a_vec, b_vec));
__m512i or_count_vec = _mm512_popcnt_epi64(_mm512_or_si512(a_vec, b_vec));
intersection = _mm512_reduce_add_epi64(and_count_vec);
union_ = _mm512_reduce_add_epi64(or_count_vec);
}
else if (n_words <= 128) { // Up to 1024 bits.
__mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n_words - 64);
__m512i a1_vec = _mm512_loadu_epi8(a);
__m512i b1_vec = _mm512_loadu_epi8(b);
__m512i a2_vec = _mm512_maskz_loadu_epi8(mask, a + 64);
__m512i b2_vec = _mm512_maskz_loadu_epi8(mask, b + 64);
__m512i and1_count_vec = _mm512_popcnt_epi64(_mm512_and_si512(a1_vec, b1_vec));
__m512i or1_count_vec = _mm512_popcnt_epi64(_mm512_or_si512(a1_vec, b1_vec));
__m512i and2_count_vec = _mm512_popcnt_epi64(_mm512_and_si512(a2_vec, b2_vec));
__m512i or2_count_vec = _mm512_popcnt_epi64(_mm512_or_si512(a2_vec, b2_vec));
intersection = _mm512_reduce_add_epi64(_mm512_add_epi64(and2_count_vec, and1_count_vec));
union_ = _mm512_reduce_add_epi64(_mm512_add_epi64(or2_count_vec, or1_count_vec));
}
else if (n_words <= 196) { // Up to 1568 bits.
__mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n_words - 128);
__m512i a1_vec = _mm512_loadu_epi8(a);
__m512i b1_vec = _mm512_loadu_epi8(b);
__m512i a2_vec = _mm512_loadu_epi8(a + 64);
__m512i b2_vec = _mm512_loadu_epi8(b + 64);
__m512i a3_vec = _mm512_maskz_loadu_epi8(mask, a + 128);
__m512i b3_vec = _mm512_maskz_loadu_epi8(mask, b + 128);
__m512i and1_count_vec = _mm512_popcnt_epi64(_mm512_and_si512(a1_vec, b1_vec));
__m512i or1_count_vec = _mm512_popcnt_epi64(_mm512_or_si512(a1_vec, b1_vec));
__m512i and2_count_vec = _mm512_popcnt_epi64(_mm512_and_si512(a2_vec, b2_vec));
__m512i or2_count_vec = _mm512_popcnt_epi64(_mm512_or_si512(a2_vec, b2_vec));
__m512i and3_count_vec = _mm512_popcnt_epi64(_mm512_and_si512(a3_vec, b3_vec));
__m512i or3_count_vec = _mm512_popcnt_epi64(_mm512_or_si512(a3_vec, b3_vec));
intersection = _mm512_reduce_add_epi64( //
_mm512_add_epi64(and3_count_vec, _mm512_add_epi64(and2_count_vec, and1_count_vec)));
union_ = _mm512_reduce_add_epi64( //
_mm512_add_epi64(or3_count_vec, _mm512_add_epi64(or2_count_vec, or1_count_vec)));
}
else if (n_words <= 256) { // Up to 2048 bits.
__mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n_words - 192);
__m512i a1_vec = _mm512_loadu_epi8(a);
__m512i b1_vec = _mm512_loadu_epi8(b);
__m512i a2_vec = _mm512_loadu_epi8(a + 64);
__m512i b2_vec = _mm512_loadu_epi8(b + 64);
__m512i a3_vec = _mm512_loadu_epi8(a + 128);
__m512i b3_vec = _mm512_loadu_epi8(b + 128);
__m512i a4_vec = _mm512_maskz_loadu_epi8(mask, a + 192);
__m512i b4_vec = _mm512_maskz_loadu_epi8(mask, b + 192);
__m512i and1_count_vec = _mm512_popcnt_epi64(_mm512_and_si512(a1_vec, b1_vec));
__m512i or1_count_vec = _mm512_popcnt_epi64(_mm512_or_si512(a1_vec, b1_vec));
__m512i and2_count_vec = _mm512_popcnt_epi64(_mm512_and_si512(a2_vec, b2_vec));
__m512i or2_count_vec = _mm512_popcnt_epi64(_mm512_or_si512(a2_vec, b2_vec));
__m512i and3_count_vec = _mm512_popcnt_epi64(_mm512_and_si512(a3_vec, b3_vec));
__m512i or3_count_vec = _mm512_popcnt_epi64(_mm512_or_si512(a3_vec, b3_vec));
__m512i and4_count_vec = _mm512_popcnt_epi64(_mm512_and_si512(a4_vec, b4_vec));
__m512i or4_count_vec = _mm512_popcnt_epi64(_mm512_or_si512(a4_vec, b4_vec));
intersection = _mm512_reduce_add_epi64(_mm512_add_epi64(_mm512_add_epi64(and4_count_vec, and3_count_vec),
_mm512_add_epi64(and2_count_vec, and1_count_vec)));
union_ = _mm512_reduce_add_epi64(_mm512_add_epi64(_mm512_add_epi64(or4_count_vec, or3_count_vec),
_mm512_add_epi64(or2_count_vec, or1_count_vec)));
}
else {
__m512i and_count_vec = _mm512_setzero_si512(), or_count_vec = _mm512_setzero_si512();
__m512i a_vec, b_vec;
simsimd_jaccard_b8_ice_cycle:
if (n_words < 64) {
__mmask64 mask = (__mmask64)_bzhi_u64(0xFFFFFFFFFFFFFFFF, n_words);
a_vec = _mm512_maskz_loadu_epi8(mask, a);
b_vec = _mm512_maskz_loadu_epi8(mask, b);
n_words = 0;
}
else {
a_vec = _mm512_loadu_epi8(a);
b_vec = _mm512_loadu_epi8(b);
a += 64, b += 64, n_words -= 64;
}
__m512i and_vec = _mm512_and_si512(a_vec, b_vec);
__m512i or_vec = _mm512_or_si512(a_vec, b_vec);
and_count_vec = _mm512_add_epi64(and_count_vec, _mm512_popcnt_epi64(and_vec));
or_count_vec = _mm512_add_epi64(or_count_vec, _mm512_popcnt_epi64(or_vec));
if (n_words) goto simsimd_jaccard_b8_ice_cycle;
intersection = _mm512_reduce_add_epi64(and_count_vec);
union_ = _mm512_reduce_add_epi64(or_count_vec);
}
*result = (union_ != 0) ? 1 - (simsimd_f64_t)intersection / (simsimd_f64_t)union_ : 1;
}
#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_ICE
#if SIMSIMD_TARGET_HASWELL
#pragma GCC push_options
#pragma GCC target("popcnt")
#pragma clang attribute push(__attribute__((target("popcnt"))), apply_to = function)
SIMSIMD_PUBLIC void simsimd_hamming_b8_haswell(simsimd_b8_t const *a, simsimd_b8_t const *b, simsimd_size_t n_words,
simsimd_distance_t *result) {
// x86 supports unaligned loads and works just fine with the scalar version for small vectors.
simsimd_size_t differences = 0;
for (; n_words >= 8; n_words -= 8, a += 8, b += 8)
differences += _mm_popcnt_u64(*(simsimd_u64_t const *)a ^ *(simsimd_u64_t const *)b);
for (; n_words; --n_words, ++a, ++b) differences += _mm_popcnt_u32(*a ^ *b);
*result = differences;
}
SIMSIMD_PUBLIC void simsimd_jaccard_b8_haswell(simsimd_b8_t const *a, simsimd_b8_t const *b, simsimd_size_t n_words,
simsimd_distance_t *result) {
// x86 supports unaligned loads and works just fine with the scalar version for small vectors.
simsimd_size_t intersection = 0, union_ = 0;
for (; n_words >= 8; n_words -= 8, a += 8, b += 8)
intersection += _mm_popcnt_u64(*(simsimd_u64_t const *)a & *(simsimd_u64_t const *)b),
union_ += _mm_popcnt_u64(*(simsimd_u64_t const *)a | *(simsimd_u64_t const *)b);
for (; n_words; --n_words, ++a, ++b) intersection += _mm_popcnt_u32(*a & *b), union_ += _mm_popcnt_u32(*a | *b);
*result = (union_ != 0) ? 1 - (simsimd_f64_t)intersection / (simsimd_f64_t)union_ : 1;
}
#pragma clang attribute pop
#pragma GCC pop_options
#endif // SIMSIMD_TARGET_HASWELL
#endif // _SIMSIMD_TARGET_X86
#ifdef __cplusplus
}
#endif
#endif
|