1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
import json, sys, os.path, configparser
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import butter, sosfilt, freqz
CONFDIR = os.path.join(os.path.dirname(__file__), "../conf")
# This information is not in the blackbox file
DEFAULT_AMP_GAIN = 18.50
AMP_GAIN = {
"apple,j180": 16.0,
"apple,j313": 16.0,
"apple,j274": 21.0,
"apple,j375": 21.0,
"apple,j473": 21.0,
"apple,j474": 21.0,
"apple,j475": 21.0,
}
def db(x):
return 10 ** (x / 20)
def smooth(a, n=3):
l = len(a)
ret = np.cumsum(a, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
ret = ret[n - 1:] / n
pad = l - len(ret)
return np.pad(ret, (pad//2, (pad + 1)//2), "edge")
def butter_lowpass(cutoff, fs, order=5):
return butter(order, cutoff, fs=fs, btype='low', output="sos", analog=False)
def butter_highpass(cutoff, fs, order=5):
return butter(order, cutoff, fs=fs, btype='high', output="sos", analog=False)
def butter_lowpass_filter(data, cutoff, fs, order=5):
sos = butter_lowpass(cutoff, fs, order=order)
y = sosfilt(sos, data)
return y
def butter_highpass_filter(data, cutoff, fs, order=5):
sos = butter_highpass(cutoff, fs, order=order)
y = sosfilt(sos, data)
return y
def pilot_filter(data, fs):
data = butter_lowpass_filter(data, 100, fs, 6)
return butter_highpass_filter(data, 10, fs, 3)
class Model:
def __init__(self, idx, an, name, conf):
self.idx = idx
self.an = an
self.name = name
self.conf = conf
self.tr_coil = float(conf["tr_coil"])
self.tr_magnet = float(conf["tr_magnet"])
self.tau_coil = float(conf["tau_coil"])
self.tau_magnet = float(conf["tau_magnet"])
self.t_limit = float(conf["t_limit"])
self.t_headroom = float(conf["t_headroom"])
self.z_nominal = float(conf["z_nominal"])
self.z_shunt = float(conf.get("z_shunt", 0))
self.is_scale = float(conf["is_scale"])
self.vs_scale = float(conf["vs_scale"])
self.a_t_20c = float(conf["a_t_20c"])
self.a_t_35c = float(conf["a_t_35c"])
self.is_chan = int(conf["is_chan"])
self.vs_chan = int(conf["vs_chan"])
self.t_ambient = an.fdr["t_ambient"]
self.t_coil = an.fdr["blocks"][0]["speakers"][self.idx]["t_coil"]
self.t_magnet = an.fdr["blocks"][0]["speakers"][self.idx]["t_magnet"]
self.m_x = []
self.m_t_coil_tg = []
self.m_t_coil = []
self.m_t_magnet_tg = []
self.m_t_magnet = []
self.l_x = []
self.l_t_coil = []
self.l_t_magnet = []
def run_model(self):
off = 0
t = 0
for blk in self.an.fdr["blocks"]:
sr = blk["sample_rate"]
cnt = blk["sample_count"]
data = blk["speakers"][self.idx]
isense = self.an.cvr[off:off+cnt, self.is_chan] * self.is_scale
vsense = self.an.cvr[off:off+cnt, self.vs_chan] * self.vs_scale
dt = 1 / self.an.sr
alpha_coil = dt / (dt + self.tau_coil)
alpha_magnet = dt / (dt + self.tau_magnet)
self.l_x.append(t)
self.l_t_coil.append(data["t_coil"])
self.l_t_magnet.append(data["t_magnet"])
for x, (i, v) in enumerate(zip(isense, vsense)):
self.m_x.append(t + x / sr)
p = i * v
tvc_tgt = self.t_magnet + p * self.tr_coil
self.t_coil = tvc_tgt * alpha_coil + self.t_coil * (1 - alpha_coil)
tmag_tgt = self.t_ambient + p * self.tr_magnet
self.t_magnet = tmag_tgt * alpha_magnet + self.t_magnet * (1 - alpha_magnet)
self.m_t_coil_tg.append(tvc_tgt)
self.m_t_coil.append(self.t_coil)
self.m_t_magnet_tg.append(tmag_tgt)
self.m_t_magnet.append(self.t_magnet)
t += cnt / sr
off += cnt
def analyze(self, outfile):
plt.clf()
fig, ax1 = plt.subplots(figsize=(30,15))
ax1.set_title(self.name)
ax1.set_xlabel('time (s)')
ax1.set_ylabel('temperature')
ax1.tick_params(axis='y')
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
color = 'tab:red'
ax2.set_ylabel('power', color=color)
ax2.tick_params(axis='y', labelcolor=color)
ax1.plot(self.m_x, self.m_t_coil, "r")
# ax1.plot(self.m_x, smooth(self.m_t_coil_tg, 1000), "y")
ax1.plot(self.m_x, self.m_t_magnet, "b")
# ax1.plot(self.m_x, smooth(self.m_t_magnet_tg, 1000), "c")
ax1.plot(self.l_x, self.l_t_coil, "om")
ax1.plot(self.l_x, self.l_t_magnet, "og")
i = self.an.cvr[:, self.is_chan] * self.is_scale
v = self.an.cvr[:, self.vs_chan] * self.vs_scale
sr = self.an.fdr["sample_rate"]
ilp = pilot_filter(i, sr)
vlp = pilot_filter(v, sr)
p = butter_lowpass_filter(i * v, 10, sr, 1)
p = smooth(p, 4000)
plp = butter_lowpass_filter(ilp * vlp, 10, sr, 1)
plp = smooth(plp, 4000)
vlprms_sq = butter_lowpass_filter(vlp * vlp, 10, sr, 1)
vlprms_sq = smooth(vlprms_sq, 4000)
r = vlprms_sq / plp
# ax2.plot(self.m_x, p, "b")
rref = np.average(r[1 * sr:2 * sr])
print(f"Initial resistance: {rref} ohms")
# Clear out the first second, since it tends to contain garbage
r[:1*sr] = rref
#r = butter_lowpass_filter(r - rref, 2, sr, 2) + rref
a = self.a_t_35c # XXX why are there two values at different temperatures?
tref = self.l_t_coil[0]
t = ((r - self.z_shunt) / (rref - self.z_shunt) - 1) / a + tref
ax1.plot(self.m_x, t, "k")
ax2.plot(self.m_x, p, "r")
# ax2.plot(self.m_x, plp, "g")
# ax2.plot(self.m_x, vlprms_sq, "b")
for level in (-1000, -6, -10, -15):
gain = AMP_GAIN.get(self.an.fdr["machine"], DEFAULT_AMP_GAIN)
pbase = (db(gain - 30) ** 2) / (self.z_nominal + self.z_shunt)
ptest = (db(gain + level) ** 2) / (self.z_nominal + self.z_shunt)
p = pbase + ptest
ax2.axhline(y=p, color='r', linestyle='--')
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.savefig(outfile)
class Analyzer:
def __init__(self, base):
self.fdr = json.load(open(base + ".fdr"))
data = open(base + ".cvr", "rb").read()
cvr = np.frombuffer(data, dtype="int16").astype("float") / 32768
maker, model = self.fdr["machine"].split(",")
cf = os.path.join(CONFDIR, maker, model + ".conf")
print(f"Using config file: {cf}")
self.conf = configparser.ConfigParser()
self.conf.read(cf)
ch = int(self.conf["Globals"]["channels"])
samples = len(cvr) // ch
self.cvr = cvr.reshape((samples, ch))
print(f"Got {samples} samples ({ch} channels)")
assert ch == self.fdr["channels"]
self.sr = self.fdr["sample_rate"]
speaker_configs = []
for key in self.conf.sections():
if not key.startswith("Speaker/"):
continue
print(key)
name = key.split("/")[1]
speaker_configs.append((name, self.conf[key]))
# Match the order that speakersafetyd uses (by group)
speaker_configs.sort(key=lambda x: int(x[1]["group"]))
self.speakers = []
for i, cfg in enumerate(speaker_configs):
self.speakers.append(Model(i, self, cfg[0], cfg[1]))
def analyze(self):
for i, spk in enumerate(self.speakers):
print(f"Processing speaker {i}")
spk.run_model()
spk.analyze(f"speaker_{i}.png")
# break
if __name__ == "__main__":
a = Analyzer(sys.argv[1])
a.analyze()
|