1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
use super::pds::{Palette, PaletteEntry};
use crate::image::{ImageSize, ToImage, ToOcrImage, ToOcrImageOpt};
use image::{ImageBuffer, Luma, LumaA, Pixel, Primitive};
use std::io::{ErrorKind, Read as _};
/// Define a type of `fn` who covert pixel from `PaletteEntry` to a target color type.
type PixelConversion<TargetColor> = fn(&PaletteEntry) -> TargetColor;
/// Store Image data directly from `PGS`.
#[derive(Clone)]
pub struct RleEncodedImage {
width: u16,
height: u16,
palette: Palette,
raw: Vec<u8>,
}
impl RleEncodedImage {
/// Create a `RleEncodedImage` from [`SupParser`]
///
/// [`SupParser`]: super::sup::SupParser
#[must_use]
pub const fn new(width: u16, height: u16, palette: Palette, raw: Vec<u8>) -> Self {
Self {
width,
height,
palette,
raw,
}
}
/// Iterate on image pixels converted with a specified function.
pub fn pixels<D: Primitive>(
&self,
convert: PixelConversion<LumaA<D>>,
) -> RlePixelIterator<'_, LumaA<D>> {
RlePixelIterator {
rle_image: self,
raw_data: &self.raw,
current_color: LumaA([D::DEFAULT_MIN_VALUE, D::DEFAULT_MAX_VALUE]),
default_color: LumaA([D::DEFAULT_MAX_VALUE, D::DEFAULT_MIN_VALUE]), // Default: white + transparent
nb_remaining_pixels: 0,
convert,
}
}
}
impl ImageSize for RleEncodedImage {
fn width(&self) -> u32 {
u32::from(self.width)
}
fn height(&self) -> u32 {
u32::from(self.height)
}
}
impl<'a> RleEncodedImage {
/// Return and iterator over Pixels of the image.
#[must_use]
pub fn iter(&'a self) -> RlePixelIterator<'a, LumaA<u8>> {
self.into_iter()
}
}
/// Create an iterator over [`RleEncodedImage`] pixels.
impl<'a> IntoIterator for &'a RleEncodedImage {
type Item = LumaA<u8>;
type IntoIter = RlePixelIterator<'a, LumaA<u8>>;
fn into_iter(self) -> Self::IntoIter {
RlePixelIterator {
rle_image: self,
raw_data: &self.raw,
current_color: LumaA([
<u8 as Primitive>::DEFAULT_MIN_VALUE,
<u8 as Primitive>::DEFAULT_MAX_VALUE,
]), // setup to luma min (black), alpha max (opaque)
default_color: LumaA([
<u8 as Primitive>::DEFAULT_MAX_VALUE,
<u8 as Primitive>::DEFAULT_MIN_VALUE,
]), // Default: white + transparent
nb_remaining_pixels: 0,
convert: pe_to_luma_a,
}
}
}
/// Convert a [`PaletteEntry`] to a `LumaA`<P>
fn pe_to_luma_a<P: Primitive>(input: &PaletteEntry) -> LumaA<P> {
let luminance = P::from(input.luminance).unwrap();
let alpha = P::from(input.transparency).unwrap();
LumaA([luminance, alpha])
}
/// This struct implement [`ToImage`] to generate an `ImageBuffer` from
/// a [`RleEncodedImage`] and a pixel conversion function.
pub struct RleToImage<'a, P, C>
where
P: Pixel<Subpixel = u8>,
C: Fn(LumaA<u8>) -> P,
{
rle_image: &'a RleEncodedImage,
conv_fn: C,
}
impl<'a, P, C> RleToImage<'a, P, C>
where
P: Pixel<Subpixel = u8>,
C: Fn(LumaA<u8>) -> P,
{
/// Create a struct to generate an image from [`RleEncodedImage`]
pub const fn new(rle_image: &'a RleEncodedImage, conv_fn: C) -> Self {
Self { rle_image, conv_fn }
}
}
impl<P, C> ToImage for RleToImage<'_, P, C>
where
P: Pixel<Subpixel = u8>,
C: Fn(LumaA<u8>) -> P,
{
type Pixel = P;
fn to_image(&self) -> ImageBuffer<P, Vec<u8>>
where
P: Pixel<Subpixel = u8>,
{
let width = self.rle_image.width();
let height = self.rle_image.height();
let pixel_iter = self.rle_image.into_iter();
let buf_size = (width * height) as usize * P::CHANNEL_COUNT as usize;
let mut buf = Vec::with_capacity(buf_size);
pixel_iter
.map(|p| (self.conv_fn)(p))
.for_each(|p| buf.extend_from_slice(p.channels()));
ImageBuffer::<P, Vec<u8>>::from_vec(width, height, buf)
.expect("Failed to create image buffer")
}
}
/// Implement [`ToOcrImage`] from [`RleEncodedImage`]
impl<C> ToOcrImage for RleToImage<'_, Luma<u8>, C>
where
C: Fn(LumaA<u8>) -> Luma<u8>,
{
fn image(&self, opt: &ToOcrImageOpt) -> image::GrayImage {
let width = self.rle_image.width();
let height = self.rle_image.height();
let border = opt.border;
let raw_pixels = self.rle_image.into_iter().collect::<Vec<_>>();
ImageBuffer::from_fn(width + border * 2, height + border * 2, |x, y| {
if x < border || x >= width + border || y < border || y >= height + border {
opt.background_color
} else {
let offset = (y - border) * width + (x - border);
let pixel = raw_pixels[offset as usize];
(self.conv_fn)(pixel)
}
})
}
}
/// struct to iterate on pixel of an `Rle` image.
pub struct RlePixelIterator<'a, C> {
rle_image: &'a RleEncodedImage,
raw_data: &'a [u8],
current_color: C,
default_color: C,
nb_remaining_pixels: u16,
convert: PixelConversion<C>,
}
/// Allow iterate over pixels of image encoded in `Rle`.
impl<Pix, Sub> Iterator for RlePixelIterator<'_, Pix>
where
Sub: Primitive,
Pix: Copy + Pixel<Subpixel = Sub>,
{
type Item = Pix;
fn next(&mut self) -> Option<Self::Item> {
if self.nb_remaining_pixels > 0 {
self.nb_remaining_pixels -= 1;
Some(self.current_color)
} else if let Some((color_id, nb_pixel)) = self.read_next_pixel() {
let color = if let Some(color) = self.rle_image.palette.get(color_id) {
(self.convert)(color)
} else {
// If color_id is not present in palette, return default value
self.default_color
};
self.current_color = color;
self.nb_remaining_pixels = nb_pixel - 1;
Some(self.current_color)
} else {
None // End of pixels
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let nb_pixels = (self.rle_image.width() * self.rle_image.height()) as usize;
(nb_pixels, Some(nb_pixels))
}
}
impl<Pix, Sub> ExactSizeIterator for RlePixelIterator<'_, Pix>
where
Sub: Primitive,
Pix: Copy + Pixel<Subpixel = Sub>,
{
}
impl<C> RlePixelIterator<'_, C> {
/// Read next pixel info(color and number of instance).
fn read_next_pixel(&mut self) -> Option<(u8 /*color */, u16 /*nb_pixels*/)> {
const MARKER: u8 = 0;
const COLOR_0: u8 = 0;
loop {
let mut color: [u8; 1] = [0; 1];
let res = self.raw_data.read_exact(&mut color);
if let Err(err) = res {
if err.kind() == ErrorKind::UnexpectedEof {
return None;
}
}
let next = color[0];
if next == MARKER {
let mut l2 = [0; 1];
self.raw_data.read_exact(&mut l2).unwrap();
if l2[0] == MARKER {
//break; // End of line
} else {
let byte = l2[0];
let nb_pixels = match CountMarker::from(byte) {
CountMarker::Long => {
let mut l3 = [0; 1];
self.raw_data.read_exact(&mut l3).unwrap();
let count_bytes = [byte & 0b0011_1111, l3[0]];
u16::from_be_bytes(count_bytes)
}
CountMarker::Short => {
let count_bits = byte & 0b0011_1111;
u16::from(u8::from_be(count_bits))
}
};
let color_marker = ColorMarker::from(byte);
let color = match color_marker {
ColorMarker::Color0 => COLOR_0,
ColorMarker::ColorN => {
let mut color = [0; 1];
self.raw_data.read_exact(&mut color).unwrap();
color[0]
}
};
return Some((color, nb_pixels));
}
} else {
return Some((next, 1));
}
}
}
}
/// Decode the color marker.
enum ColorMarker {
/// color 0 : black
Color0,
/// color N : color define in code
ColorN,
}
impl From<u8> for ColorMarker {
fn from(value: u8) -> Self {
if (value & 0b1000_0000) > 0 {
Self::ColorN
} else {
Self::Color0
}
}
}
/// Decode the pixels count marcker.
enum CountMarker {
/// the number of pixels is between 1 and 63
Short,
/// the number of pixels is between 64 and 16383
Long,
}
impl From<u8> for CountMarker {
fn from(value: u8) -> Self {
if (value & 0b0100_0000) > 0 {
Self::Long
} else {
Self::Short
}
}
}
|