1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
// Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause
#![cfg(feature = "backend-mmap")]
#![allow(clippy::undocumented_unsafe_blocks)]
extern crate criterion;
extern crate vm_memory;
use std::fs::{File, OpenOptions};
use std::mem::size_of;
use std::path::Path;
use criterion::{black_box, Criterion};
use vm_memory::{ByteValued, Bytes, GuestAddress, GuestMemory};
const REGION_SIZE: usize = 0x8000_0000;
const REGIONS_COUNT: u64 = 8;
const ACCESS_SIZE: usize = 0x200;
#[repr(C)]
#[derive(Copy, Clone, Default)]
struct SmallDummy {
a: u32,
b: u32,
}
unsafe impl ByteValued for SmallDummy {}
#[repr(C)]
#[derive(Copy, Clone, Default)]
struct BigDummy {
elements: [u64; 12],
}
unsafe impl ByteValued for BigDummy {}
fn make_image(size: usize) -> Vec<u8> {
let mut image: Vec<u8> = Vec::with_capacity(size);
for i in 0..size {
// We just want some different numbers here, so the conversion is OK.
image.push(i as u8);
}
image
}
enum AccessKind {
// The parameter represents the index of the region where the access should happen.
// Indices are 0-based.
InRegion(u64),
// The parameter represents the index of the first region (i.e. where the access starts).
CrossRegion(u64),
}
impl AccessKind {
fn make_offset(&self, access_size: usize) -> u64 {
match *self {
AccessKind::InRegion(idx) => REGION_SIZE as u64 * idx,
AccessKind::CrossRegion(idx) => {
REGION_SIZE as u64 * (idx + 1) - (access_size as u64 / 2)
}
}
}
}
pub fn benchmark_for_mmap(c: &mut Criterion) {
let memory = super::create_guest_memory_mmap(REGION_SIZE, REGIONS_COUNT);
// Just a sanity check.
assert_eq!(
memory.last_addr(),
GuestAddress(REGION_SIZE as u64 * REGIONS_COUNT - 0x01)
);
let some_small_dummy = SmallDummy {
a: 0x1111_2222,
b: 0x3333_4444,
};
let some_big_dummy = BigDummy {
elements: [0x1111_2222_3333_4444; 12],
};
let mut image = make_image(ACCESS_SIZE);
let buf = &mut [0u8; ACCESS_SIZE];
let mut file = File::open(Path::new("/dev/zero")).expect("Could not open /dev/zero");
let mut file_to_write = OpenOptions::new()
.write(true)
.open("/dev/null")
.expect("Could not open /dev/null");
let accesses = &[
AccessKind::InRegion(0),
AccessKind::CrossRegion(0),
AccessKind::CrossRegion(REGIONS_COUNT - 2),
AccessKind::InRegion(REGIONS_COUNT - 1),
];
for access in accesses {
let offset = access.make_offset(ACCESS_SIZE);
let address = GuestAddress(offset);
// Check performance for read operations.
c.bench_function(format!("read_from_{:#0X}", offset).as_str(), |b| {
b.iter(|| {
black_box(&memory)
.read_volatile_from(address, &mut image.as_slice(), ACCESS_SIZE)
.unwrap()
})
});
c.bench_function(format!("read_from_file_{:#0X}", offset).as_str(), |b| {
b.iter(|| {
black_box(&memory)
.read_volatile_from(address, &mut file, ACCESS_SIZE)
.unwrap()
})
});
c.bench_function(format!("read_exact_from_{:#0X}", offset).as_str(), |b| {
b.iter(|| {
black_box(&memory)
.read_exact_volatile_from(address, &mut image.as_slice(), ACCESS_SIZE)
.unwrap()
})
});
c.bench_function(
format!("read_entire_slice_from_{:#0X}", offset).as_str(),
|b| b.iter(|| black_box(&memory).read_slice(buf, address).unwrap()),
);
c.bench_function(format!("read_slice_from_{:#0X}", offset).as_str(), |b| {
b.iter(|| black_box(&memory).read(buf, address).unwrap())
});
let obj_off = access.make_offset(size_of::<SmallDummy>());
let obj_addr = GuestAddress(obj_off);
c.bench_function(
format!("read_small_obj_from_{:#0X}", obj_off).as_str(),
|b| b.iter(|| black_box(&memory).read_obj::<SmallDummy>(obj_addr).unwrap()),
);
let obj_off = access.make_offset(size_of::<BigDummy>());
let obj_addr = GuestAddress(obj_off);
c.bench_function(format!("read_big_obj_from_{:#0X}", obj_off).as_str(), |b| {
b.iter(|| black_box(&memory).read_obj::<BigDummy>(obj_addr).unwrap())
});
// Check performance for write operations.
c.bench_function(format!("write_to_{:#0X}", offset).as_str(), |b| {
b.iter(|| {
black_box(&memory)
.write_volatile_to(address, &mut image.as_mut_slice(), ACCESS_SIZE)
.unwrap()
})
});
c.bench_function(format!("write_to_file_{:#0X}", offset).as_str(), |b| {
b.iter(|| {
black_box(&memory)
.write_volatile_to(address, &mut file_to_write, ACCESS_SIZE)
.unwrap()
})
});
c.bench_function(format!("write_exact_to_{:#0X}", offset).as_str(), |b| {
b.iter(|| {
black_box(&memory)
.write_all_volatile_to(address, &mut image.as_mut_slice(), ACCESS_SIZE)
.unwrap()
})
});
c.bench_function(
format!("write_entire_slice_to_{:#0X}", offset).as_str(),
|b| b.iter(|| black_box(&memory).write_slice(buf, address).unwrap()),
);
c.bench_function(format!("write_slice_to_{:#0X}", offset).as_str(), |b| {
b.iter(|| black_box(&memory).write(buf, address).unwrap())
});
let obj_off = access.make_offset(size_of::<SmallDummy>());
let obj_addr = GuestAddress(obj_off);
c.bench_function(
format!("write_small_obj_to_{:#0X}", obj_off).as_str(),
|b| {
b.iter(|| {
black_box(&memory)
.write_obj::<SmallDummy>(some_small_dummy, obj_addr)
.unwrap()
})
},
);
let obj_off = access.make_offset(size_of::<BigDummy>());
let obj_addr = GuestAddress(obj_off);
c.bench_function(format!("write_big_obj_to_{:#0X}", obj_off).as_str(), |b| {
b.iter(|| {
black_box(&memory)
.write_obj::<BigDummy>(some_big_dummy, obj_addr)
.unwrap()
})
});
}
}
|