File: fact-valid-module.rs

package info (click to toggle)
rust-wasmtime 26.0.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 48,492 kB
  • sloc: ansic: 4,003; sh: 561; javascript: 542; cpp: 254; asm: 175; ml: 96; makefile: 55
file content (222 lines) | stat: -rw-r--r-- 7,996 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//! A simple fuzzer for FACT
//!
//! This is an intentionally small fuzzer which is intended to only really be
//! used during the development of FACT itself when generating adapter modules.
//! This creates arbitrary adapter signatures and then generates the required
//! trampoline for that adapter ensuring that the final output wasm module is a
//! valid wasm module. This doesn't actually validate anything about the
//! correctness of the trampoline, only that it's valid wasm.

#![no_main]

use arbitrary::Unstructured;
use component_fuzz_util::{TestCase, Type, MAX_TYPE_DEPTH};
use libfuzzer_sys::fuzz_target;
use wasmparser::types::ComponentAnyTypeId;
use wasmparser::{Parser, Payload, Validator, WasmFeatures};
use wasmtime_environ::component::*;
use wasmtime_environ::fact::Module;

const TYPE_COUNT: usize = 50;
const MAX_ARITY: u32 = 5;
const TEST_CASE_COUNT: usize = 20;

#[derive(Debug)]
struct GenAdapterModule<'a> {
    debug: bool,
    adapters: Vec<GenAdapter<'a>>,
}

#[derive(Debug)]
struct GenAdapter<'a> {
    post_return: bool,
    lift_memory64: bool,
    lower_memory64: bool,
    test: TestCase<'a>,
}

fuzz_target!(|data: &[u8]| {
    let _ = target(data);
});

fn target(data: &[u8]) -> arbitrary::Result<()> {
    drop(env_logger::try_init());

    let mut u = Unstructured::new(data);

    // First generate a set of type to select from.
    let mut type_fuel = 1000;
    let mut types = Vec::new();
    for _ in 0..u.int_in_range(1..=TYPE_COUNT)? {
        // Only discount fuel if the generation was successful,
        // otherwise we'll get more random data and try again.
        types.push(Type::generate(&mut u, MAX_TYPE_DEPTH, &mut type_fuel)?);
    }

    // Next generate a set of static API test cases driven by the above
    // types.
    let mut ret = GenAdapterModule {
        debug: u.arbitrary()?,
        adapters: Vec::new(),
    };
    for _ in 0..u.int_in_range(1..=TEST_CASE_COUNT)? {
        let mut params = Vec::new();
        let mut results = Vec::new();
        for _ in 0..u.int_in_range(0..=MAX_ARITY)? {
            params.push(u.choose(&types)?);
        }
        for _ in 0..u.int_in_range(0..=MAX_ARITY)? {
            results.push(u.choose(&types)?);
        }

        let test = TestCase {
            params,
            results,
            encoding1: u.arbitrary()?,
            encoding2: u.arbitrary()?,
        };
        ret.adapters.push(GenAdapter {
            test,
            post_return: u.arbitrary()?,
            lift_memory64: u.arbitrary()?,
            lower_memory64: u.arbitrary()?,
        });
    }

    // Manufactures a unique `CoreDef` so all function imports get unique
    // function imports.
    let mut next_def = 0;
    let mut dummy_def = || {
        next_def += 1;
        dfg::CoreDef::Adapter(dfg::AdapterId::from_u32(next_def))
    };

    // Manufactures a `CoreExport` for a memory with the shape specified. Note
    // that we can't import as many memories as functions so these are
    // intentionally limited. Once a handful of memories are generated of each
    // type then they start getting reused.
    let mut next_memory = 0;
    let mut memories32 = Vec::new();
    let mut memories64 = Vec::new();
    let mut dummy_memory = |memory64: bool| {
        let dst = if memory64 {
            &mut memories64
        } else {
            &mut memories32
        };
        let idx = if dst.len() < 5 {
            next_memory += 1;
            dst.push(next_memory - 1);
            next_memory - 1
        } else {
            dst[0]
        };
        dfg::CoreExport {
            instance: dfg::InstanceId::from_u32(idx),
            item: ExportItem::Name(String::new()),
        }
    };
    let mut validator = Validator::new();
    let mut types = ComponentTypesBuilder::new(&validator);

    let mut adapters = Vec::new();
    for adapter in ret.adapters.iter() {
        let wat_decls = adapter.test.declarations();
        let wat = format!(
            "(component
                {types}
                (type (func {params} {results}))
            )",
            types = wat_decls.types,
            params = wat_decls.params,
            results = wat_decls.results,
        );
        let wasm = wat::parse_str(&wat).unwrap();

        let mut type_index = 0;
        for payload in Parser::new(0).parse_all(&wasm) {
            let payload = payload.unwrap();
            validator.payload(&payload).unwrap();
            let section = match payload {
                Payload::ComponentTypeSection(s) => s,
                _ => continue,
            };
            for _ in section {
                let validator_types = validator.types(0).unwrap();
                let id = validator_types.component_any_type_at(type_index);
                type_index += 1;
                let id = match id {
                    ComponentAnyTypeId::Func(id) => id,
                    _ => continue,
                };
                let ty = types
                    .convert_component_func_type(validator_types, id)
                    .unwrap();
                adapters.push(Adapter {
                    lift_ty: ty,
                    lower_ty: ty,
                    lower_options: AdapterOptions {
                        instance: RuntimeComponentInstanceIndex::from_u32(0),
                        string_encoding: convert_encoding(adapter.test.encoding1),
                        memory64: adapter.lower_memory64,
                        // Pessimistically assume that memory/realloc are going to be
                        // required for this trampoline and provide it. Avoids doing
                        // calculations to figure out whether they're necessary and
                        // simplifies the fuzzer here without reducing coverage within FACT
                        // itself.
                        memory: Some(dummy_memory(adapter.lower_memory64)),
                        realloc: Some(dummy_def()),
                        // Lowering never allows `post-return`
                        post_return: None,
                    },
                    lift_options: AdapterOptions {
                        instance: RuntimeComponentInstanceIndex::from_u32(1),
                        string_encoding: convert_encoding(adapter.test.encoding2),
                        memory64: adapter.lift_memory64,
                        memory: Some(dummy_memory(adapter.lift_memory64)),
                        realloc: Some(dummy_def()),
                        post_return: if adapter.post_return {
                            Some(dummy_def())
                        } else {
                            None
                        },
                    },
                    func: dummy_def(),
                });
            }
        }
        validator.reset();
    }

    let mut fact_module = Module::new(&types, ret.debug);
    for (i, adapter) in adapters.iter().enumerate() {
        fact_module.adapt(&format!("adapter{i}"), adapter);
    }
    let wasm = fact_module.encode();
    let result = Validator::new_with_features(WasmFeatures::default() | WasmFeatures::MEMORY64)
        .validate_all(&wasm);

    let err = match result {
        Ok(_) => return Ok(()),
        Err(e) => e,
    };
    eprintln!("invalid wasm module: {err:?}");
    for adapter in ret.adapters.iter() {
        eprintln!("adapter: {adapter:?}");
    }
    std::fs::write("invalid.wasm", &wasm).unwrap();
    match wasmprinter::print_bytes(&wasm) {
        Ok(s) => std::fs::write("invalid.wat", &s).unwrap(),
        Err(_) => drop(std::fs::remove_file("invalid.wat")),
    }

    panic!()
}

fn convert_encoding(encoding: component_fuzz_util::StringEncoding) -> StringEncoding {
    match encoding {
        component_fuzz_util::StringEncoding::Utf8 => StringEncoding::Utf8,
        component_fuzz_util::StringEncoding::Utf16 => StringEncoding::Utf16,
        component_fuzz_util::StringEncoding::Latin1OrUtf16 => StringEncoding::CompactUtf16,
    }
}