1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
/// Build the OCaml code and statically link it into the Rust library; see the
/// [ocaml-interop
/// example](https://github.com/tezedge/ocaml-interop/blob/master/testing/rust-caller/build.rs)
/// for more details. After playing with this a bit, I discovered that the best
/// approach to avoid missing symbols was to imitate `dune`: I observed `rm -rf
/// _build && dune build ./ocaml/interpret.exe.o --display=verbose` and used
/// that as a pattern, now encoded in `ocaml/Makefile` for easier debugging.
use std::{env, path::PathBuf, process::Command};
const LIB_NAME: &'static str = "interpret";
const OCAML_DIR: &'static str = "ocaml";
const SPEC_DIR: &'static str = "ocaml/spec";
const SPEC_REPOSITORY: &'static str = "https://github.com/conrad-watt/spec";
const SPEC_REPOSITORY_BRANCH: &'static str = "wasmtime_fuzzing";
const SPEC_REPOSITORY_REV: &'static str = "c6bab4461e10229e557aae2e1027cadfce0161ce";
fn main() {
println!("cargo:rustc-check-cfg=cfg(feature, values(\"has-libinterpret\"))");
println!("cargo:rustc-check-cfg=cfg(fuzzing)");
if cfg!(feature = "build-libinterpret") {
build();
}
}
fn build() {
let out_dir = &env::var("OUT_DIR").unwrap();
// Re-run if changed.
println!("cargo:rerun-if-changed={OCAML_DIR}/{LIB_NAME}.ml");
println!("cargo:rerun-if-changed={OCAML_DIR}/Makefile");
if let Some(other_dir) = env::var_os("FFI_LIB_DIR") {
// Link with a library provided in the `FFI_LIB_DIR`.
println!("cargo:rustc-link-search={}", other_dir.to_str().unwrap());
println!("cargo:rustc-link-lib=static={LIB_NAME}");
} else {
// Ensure the spec repository is present.
if is_spec_repository_empty(SPEC_DIR) {
retrieve_spec_repository(SPEC_DIR)
}
// Build the library to link to.
build_lib(out_dir, OCAML_DIR);
println!("cargo:rustc-link-search={out_dir}");
println!("cargo:rustc-link-lib=static={LIB_NAME}");
}
// Enabling this feature alerts the compiler to use the `with_library`
// module.
println!("cargo:rustc-cfg=feature=\"has-libinterpret\"");
}
// Build the OCaml library into Cargo's `out` directory.
fn build_lib(out_dir: &str, ocaml_dir: &str) {
let status = Command::new("make")
.arg(format!("BUILD_DIR={out_dir}"))
.current_dir(ocaml_dir)
.status()
.expect("Failed to execute 'make' command to build OCaml library");
assert!(
status.success(),
"Failed to build the OCaml library using 'make'."
)
}
// Check if the spec repository directory contains any files.
fn is_spec_repository_empty(destination: &str) -> bool {
PathBuf::from(destination)
.read_dir()
.map(|mut i| i.next().is_none())
.unwrap_or(true)
}
// Clone the spec repository into `destination`. This exists due to the large
// size of the dependencies (e.g. KaTeX) that are pulled if this were cloned
// recursively as a submodule.
fn retrieve_spec_repository(destination: &str) {
let status = Command::new("git")
.arg("clone")
.arg(SPEC_REPOSITORY)
.arg("-b")
.arg(SPEC_REPOSITORY_BRANCH)
.arg(destination)
.status()
.expect("Failed to execute 'git' command to clone spec repository.");
assert!(status.success(), "Failed to retrieve the spec repository.");
let status = Command::new("git")
.arg("reset")
.arg("--hard")
.arg(SPEC_REPOSITORY_REV)
.current_dir(destination)
.status()
.expect("Failed to execute 'git' command to clone spec repository.");
assert!(status.success(), "Failed to reset to revision.");
}
|