1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
#![no_main]
use cranelift_codegen::ir::Function;
use cranelift_codegen::ir::Signature;
use cranelift_codegen::ir::UserExternalName;
use cranelift_codegen::ir::UserFuncName;
use cranelift_codegen::Context;
use cranelift_control::ControlPlane;
use libfuzzer_sys::arbitrary;
use libfuzzer_sys::arbitrary::Arbitrary;
use libfuzzer_sys::arbitrary::Unstructured;
use libfuzzer_sys::fuzz_target;
use once_cell::sync::Lazy;
use std::collections::HashMap;
use std::fmt;
use std::sync::atomic::AtomicU64;
use std::sync::atomic::Ordering;
use cranelift_codegen::data_value::DataValue;
use cranelift_codegen::ir::{LibCall, TrapCode};
use cranelift_codegen::isa;
use cranelift_filetests::function_runner::{TestFileCompiler, Trampoline};
use cranelift_fuzzgen::*;
use cranelift_interpreter::environment::FuncIndex;
use cranelift_interpreter::environment::FunctionStore;
use cranelift_interpreter::interpreter::{
Interpreter, InterpreterError, InterpreterState, LibCallValues,
};
use cranelift_interpreter::step::ControlFlow;
use cranelift_interpreter::step::CraneliftTrap;
use cranelift_native::builder_with_options;
use smallvec::smallvec;
const INTERPRETER_FUEL: u64 = 4096;
/// Gather statistics about the fuzzer executions
struct Statistics {
/// Inputs that fuzzgen can build a function with
/// This is also how many compiles we executed
pub valid_inputs: AtomicU64,
/// How many times did we generate an invalid format?
pub invalid_inputs: AtomicU64,
/// Total amount of runs that we tried in the interpreter
/// One fuzzer input can have many runs
pub total_runs: AtomicU64,
/// How many runs were successful?
/// This is also how many runs were run in the backend
pub run_result_success: AtomicU64,
/// How many runs resulted in a timeout?
pub run_result_timeout: AtomicU64,
/// How many runs ended with a trap?
pub run_result_trap: HashMap<CraneliftTrap, AtomicU64>,
}
impl Statistics {
pub fn print(&self, valid_inputs: u64) {
// We get valid_inputs as a param since we already loaded it previously.
let total_runs = self.total_runs.load(Ordering::SeqCst);
let invalid_inputs = self.invalid_inputs.load(Ordering::SeqCst);
let run_result_success = self.run_result_success.load(Ordering::SeqCst);
let run_result_timeout = self.run_result_timeout.load(Ordering::SeqCst);
println!("== FuzzGen Statistics ====================");
println!("Valid Inputs: {valid_inputs}");
println!(
"Invalid Inputs: {} ({:.1}% of Total Inputs)",
invalid_inputs,
(invalid_inputs as f64 / (valid_inputs + invalid_inputs) as f64) * 100.0
);
println!("Total Runs: {total_runs}");
println!(
"Successful Runs: {} ({:.1}% of Total Runs)",
run_result_success,
(run_result_success as f64 / total_runs as f64) * 100.0
);
println!(
"Timed out Runs: {} ({:.1}% of Total Runs)",
run_result_timeout,
(run_result_timeout as f64 / total_runs as f64) * 100.0
);
println!("Traps:");
// Load and filter out empty trap codes.
let mut traps = self
.run_result_trap
.iter()
.map(|(trap, count)| (trap, count.load(Ordering::SeqCst)))
.filter(|(_, count)| *count != 0)
.collect::<Vec<_>>();
// Sort traps by count in a descending order
traps.sort_by_key(|(_, count)| -(*count as i64));
for (trap, count) in traps.into_iter() {
println!(
"\t{}: {} ({:.1}% of Total Runs)",
trap,
count,
(count as f64 / total_runs as f64) * 100.0
);
}
}
}
impl Default for Statistics {
fn default() -> Self {
// Pre-Register all trap codes since we can't modify this hashmap atomically.
let mut run_result_trap = HashMap::new();
run_result_trap.insert(CraneliftTrap::Debug, AtomicU64::new(0));
run_result_trap.insert(CraneliftTrap::BadSignature, AtomicU64::new(0));
run_result_trap.insert(CraneliftTrap::UnreachableCodeReached, AtomicU64::new(0));
run_result_trap.insert(CraneliftTrap::HeapMisaligned, AtomicU64::new(0));
for trapcode in TrapCode::non_user_traps() {
run_result_trap.insert(CraneliftTrap::User(*trapcode), AtomicU64::new(0));
}
Self {
valid_inputs: AtomicU64::new(0),
invalid_inputs: AtomicU64::new(0),
total_runs: AtomicU64::new(0),
run_result_success: AtomicU64::new(0),
run_result_timeout: AtomicU64::new(0),
run_result_trap,
}
}
}
#[derive(Debug)]
enum RunResult {
Success(Vec<DataValue>),
Trap(CraneliftTrap),
Timeout,
Error(Box<dyn std::error::Error>),
}
impl PartialEq for RunResult {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(RunResult::Success(l), RunResult::Success(r)) => {
l.len() == r.len() && l.iter().zip(r).all(|(l, r)| l.bitwise_eq(r))
}
(RunResult::Trap(l), RunResult::Trap(r)) => l == r,
(RunResult::Timeout, RunResult::Timeout) => true,
(RunResult::Error(_), RunResult::Error(_)) => unimplemented!(),
_ => false,
}
}
}
pub struct TestCase {
/// TargetIsa to use when compiling this test case
pub isa: isa::OwnedTargetIsa,
/// Functions under test
/// By convention the first function is the main function.
pub functions: Vec<Function>,
/// Control planes for function compilation.
/// There should be an equal amount as functions to compile.
pub ctrl_planes: Vec<ControlPlane>,
/// Generate multiple test inputs for each test case.
/// This allows us to get more coverage per compilation, which may be somewhat expensive.
pub inputs: Vec<TestCaseInput>,
/// Should this `TestCase` be tested after optimizations.
pub compare_against_host: bool,
}
impl fmt::Debug for TestCase {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if !self.compare_against_host {
writeln!(f, ";; Testing against optimized version")?;
}
PrintableTestCase::run(&self.isa, &self.functions, &self.inputs).fmt(f)
}
}
impl<'a> Arbitrary<'a> for TestCase {
fn arbitrary(u: &mut Unstructured<'a>) -> arbitrary::Result<Self> {
let _ = env_logger::try_init();
Self::generate(u).map_err(|_| {
STATISTICS.invalid_inputs.fetch_add(1, Ordering::SeqCst);
arbitrary::Error::IncorrectFormat
})
}
}
impl TestCase {
pub fn generate(u: &mut Unstructured) -> anyhow::Result<Self> {
let mut gen = FuzzGen::new(u);
let compare_against_host = gen.u.arbitrary()?;
// TestCase is meant to be consumed by a runner, so we make the assumption here that we're
// generating a TargetIsa for the host.
let mut builder =
builder_with_options(true).expect("Unable to build a TargetIsa for the current host");
let flags = gen.generate_flags(builder.triple().architecture)?;
gen.set_isa_flags(&mut builder, IsaFlagGen::Host)?;
let isa = builder.finish(flags)?;
// When generating functions, we allow each function to call any function that has
// already been generated. This guarantees that we never have loops in the call graph.
// We generate these backwards, and then reverse them so that the main function is at
// the start.
let func_count = gen.u.int_in_range(gen.config.testcase_funcs.clone())?;
let mut functions: Vec<Function> = Vec::with_capacity(func_count);
let mut ctrl_planes: Vec<ControlPlane> = Vec::with_capacity(func_count);
for i in (0..func_count).rev() {
// Function name must be in a different namespace than TESTFILE_NAMESPACE (0)
let fname = UserFuncName::user(1, i as u32);
let usercalls: Vec<(UserExternalName, Signature)> = functions
.iter()
.map(|f| {
(
f.name.get_user().unwrap().clone(),
f.stencil.signature.clone(),
)
})
.collect();
let func =
gen.generate_func(fname, isa.clone(), usercalls, ALLOWED_LIBCALLS.to_vec())?;
functions.push(func);
ctrl_planes.push(ControlPlane::arbitrary(gen.u)?);
}
// Now reverse the functions so that the main function is at the start.
functions.reverse();
let main = &functions[0];
let inputs = gen.generate_test_inputs(&main.signature)?;
Ok(TestCase {
isa,
functions,
ctrl_planes,
inputs,
compare_against_host,
})
}
fn to_optimized(&self) -> Self {
let mut ctrl_planes = self.ctrl_planes.clone();
let optimized_functions: Vec<Function> = self
.functions
.iter()
.zip(ctrl_planes.iter_mut())
.map(|(func, ctrl_plane)| {
let mut ctx = Context::for_function(func.clone());
ctx.optimize(self.isa.as_ref(), ctrl_plane).unwrap();
ctx.func
})
.collect();
TestCase {
isa: self.isa.clone(),
functions: optimized_functions,
ctrl_planes,
inputs: self.inputs.clone(),
compare_against_host: false,
}
}
/// Returns the main function of this test case.
pub fn main(&self) -> &Function {
&self.functions[0]
}
}
fn run_in_interpreter(interpreter: &mut Interpreter, args: &[DataValue]) -> RunResult {
// The entrypoint function is always 0
let index = FuncIndex::from_u32(0);
let res = interpreter.call_by_index(index, args);
match res {
Ok(ControlFlow::Return(results)) => RunResult::Success(results.to_vec()),
Ok(ControlFlow::Trap(trap)) => RunResult::Trap(trap),
Ok(cf) => RunResult::Error(format!("Unrecognized exit ControlFlow: {cf:?}").into()),
Err(InterpreterError::FuelExhausted) => RunResult::Timeout,
Err(e) => RunResult::Error(e.into()),
}
}
fn run_in_host(trampoline: &Trampoline, args: &[DataValue]) -> RunResult {
let res = trampoline.call(args);
RunResult::Success(res)
}
/// These libcalls need a interpreter implementation in `build_interpreter`
const ALLOWED_LIBCALLS: &'static [LibCall] = &[
LibCall::CeilF32,
LibCall::CeilF64,
LibCall::FloorF32,
LibCall::FloorF64,
LibCall::TruncF32,
LibCall::TruncF64,
];
fn build_interpreter(testcase: &TestCase) -> Interpreter {
let mut env = FunctionStore::default();
for func in testcase.functions.iter() {
env.add(func.name.to_string(), &func);
}
let state = InterpreterState::default()
.with_function_store(env)
.with_libcall_handler(|libcall: LibCall, args: LibCallValues| {
use LibCall::*;
Ok(smallvec![match (libcall, &args[..]) {
(CeilF32, [DataValue::F32(a)]) => DataValue::F32(a.ceil()),
(CeilF64, [DataValue::F64(a)]) => DataValue::F64(a.ceil()),
(FloorF32, [DataValue::F32(a)]) => DataValue::F32(a.floor()),
(FloorF64, [DataValue::F64(a)]) => DataValue::F64(a.floor()),
(TruncF32, [DataValue::F32(a)]) => DataValue::F32(a.trunc()),
(TruncF64, [DataValue::F64(a)]) => DataValue::F64(a.trunc()),
_ => unreachable!(),
}])
});
let interpreter = Interpreter::new(state).with_fuel(Some(INTERPRETER_FUEL));
interpreter
}
static STATISTICS: Lazy<Statistics> = Lazy::new(Statistics::default);
fn run_test_inputs(testcase: &TestCase, run: impl Fn(&[DataValue]) -> RunResult) {
for args in &testcase.inputs {
STATISTICS.total_runs.fetch_add(1, Ordering::SeqCst);
// We rebuild the interpreter every run so that we don't accidentally carry over any state
// between runs, such as fuel remaining.
let mut interpreter = build_interpreter(&testcase);
let int_res = run_in_interpreter(&mut interpreter, args);
match int_res {
RunResult::Success(_) => {
STATISTICS.run_result_success.fetch_add(1, Ordering::SeqCst);
}
RunResult::Trap(trap) => {
STATISTICS.run_result_trap[&trap].fetch_add(1, Ordering::SeqCst);
// If this input traps, skip it and continue trying other inputs
// for this function. We've already compiled it anyway.
//
// We could catch traps in the host run and compare them to the
// interpreter traps, but since we already test trap cases with
// wasm tests and wasm-level fuzzing, the amount of effort does
// not justify implementing it again here.
continue;
}
RunResult::Timeout => {
// We probably generated an infinite loop, we should drop this entire input.
// We could `continue` like we do on traps, but timeouts are *really* expensive.
STATISTICS.run_result_timeout.fetch_add(1, Ordering::SeqCst);
return;
}
RunResult::Error(e) => panic!("interpreter failed: {e:?}"),
}
let res = run(args);
// This situation can happen when we are comparing the interpreter against the interpreter, and
// one of the optimization passes has increased the number of instructions in the function.
// This can cause the interpreter to run out of fuel in the second run, but not the first.
// We should ignore these cases.
// Running in the host should never return a timeout, so that should be ok.
if res == RunResult::Timeout {
return;
}
assert_eq!(int_res, res);
}
}
fuzz_target!(|testcase: TestCase| {
let mut testcase = testcase;
let fuel: u8 = std::env::args()
.find_map(|arg| arg.strip_prefix("--fuel=").map(|s| s.to_owned()))
.map(|fuel| fuel.parse().expect("fuel should be a valid integer"))
.unwrap_or_default();
for i in 0..testcase.ctrl_planes.len() {
testcase.ctrl_planes[i].set_fuel(fuel)
}
let testcase = testcase;
// This is the default, but we should ensure that it wasn't accidentally turned off anywhere.
assert!(testcase.isa.flags().enable_verifier());
// Periodically print statistics
let valid_inputs = STATISTICS.valid_inputs.fetch_add(1, Ordering::SeqCst);
if valid_inputs != 0 && valid_inputs % 10000 == 0 {
STATISTICS.print(valid_inputs);
}
if !testcase.compare_against_host {
let opt_testcase = testcase.to_optimized();
run_test_inputs(&testcase, |args| {
// We rebuild the interpreter every run so that we don't accidentally carry over any state
// between runs, such as fuel remaining.
let mut interpreter = build_interpreter(&opt_testcase);
run_in_interpreter(&mut interpreter, args)
});
} else {
let mut compiler = TestFileCompiler::new(testcase.isa.clone());
compiler
.add_functions(&testcase.functions[..], testcase.ctrl_planes.clone())
.unwrap();
let compiled = compiler.compile().unwrap();
let trampoline = compiled.get_trampoline(testcase.main()).unwrap();
run_test_inputs(&testcase, |args| run_in_host(&trampoline, args));
}
});
|