1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
//! In this example we build an [S-expression](https://en.wikipedia.org/wiki/S-expression)
//! parser and tiny [lisp](https://en.wikipedia.org/wiki/Lisp_(programming_language)) interpreter.
//! Lisp is a simple type of language made up of Atoms and Lists, forming easily parsable trees.
use winnow::{
ascii::{alpha1, digit1, multispace0, multispace1},
combinator::alt,
combinator::repeat,
combinator::{cut_err, opt},
combinator::{delimited, preceded, terminated},
error::ContextError,
error::StrContext,
prelude::*,
token::one_of,
};
/// We start with a top-level function to tie everything together, letting
/// us call eval on a string directly
pub(crate) fn eval_from_str(src: &str) -> Result<Expr, String> {
parse_expr
.parse(src)
.map_err(|e| e.to_string())
.and_then(|exp| eval_expression(exp).ok_or_else(|| "Eval failed".to_owned()))
}
/// For parsing, we start by defining the types that define the shape of data that we want.
/// In this case, we want something tree-like
///
/// The remaining half is Lists. We implement these as recursive Expressions.
/// For a list of numbers, we have `'(1 2 3)`, which we'll parse to:
/// ```
/// Expr::Quote(vec![Expr::Constant(Atom::Num(1)),
/// Expr::Constant(Atom::Num(2)),
/// Expr::Constant(Atom::Num(3))])
/// Quote takes an S-expression and prevents evaluation of it, making it a data
/// structure that we can deal with programmatically. Thus any valid expression
/// is also a valid data structure in Lisp itself.
#[derive(Debug, Eq, PartialEq, Clone)]
pub(crate) enum Expr {
Constant(Atom),
/// (func-name arg1 arg2)
Application(Box<Expr>, Vec<Expr>),
/// (if predicate do-this)
If(Box<Expr>, Box<Expr>),
/// (if predicate do-this otherwise-do-this)
IfElse(Box<Expr>, Box<Expr>, Box<Expr>),
/// '(3 (if (+ 3 3) 4 5) 7)
Quote(Vec<Expr>),
}
/// We now wrap this type and a few other primitives into our Atom type.
/// Remember from before that Atoms form one half of our language.
#[derive(Debug, Eq, PartialEq, Clone)]
pub(crate) enum Atom {
Num(i32),
Keyword(String),
Boolean(bool),
BuiltIn(BuiltIn),
}
/// Now, the most basic type. We define some built-in functions that our lisp has
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub(crate) enum BuiltIn {
Plus,
Minus,
Times,
Divide,
Equal,
Not,
}
/// With types defined, we move onto the top-level expression parser!
fn parse_expr(i: &mut &'_ str) -> ModalResult<Expr> {
preceded(
multispace0,
alt((parse_constant, parse_application, parse_if, parse_quote)),
)
.parse_next(i)
}
/// We then add the Expr layer on top
fn parse_constant(i: &mut &'_ str) -> ModalResult<Expr> {
parse_atom.map(Expr::Constant).parse_next(i)
}
/// Now we take all these simple parsers and connect them.
/// We can now parse half of our language!
fn parse_atom(i: &mut &'_ str) -> ModalResult<Atom> {
alt((
parse_num,
parse_bool,
parse_builtin.map(Atom::BuiltIn),
parse_keyword,
))
.parse_next(i)
}
/// Next up is number parsing. We're keeping it simple here by accepting any number (> 1)
/// of digits but ending the program if it doesn't fit into an i32.
fn parse_num(i: &mut &'_ str) -> ModalResult<Atom> {
alt((
digit1.try_map(|digit_str: &str| digit_str.parse::<i32>().map(Atom::Num)),
preceded("-", digit1).map(|digit_str: &str| Atom::Num(-digit_str.parse::<i32>().unwrap())),
))
.parse_next(i)
}
/// Our boolean values are also constant, so we can do it the same way
fn parse_bool(i: &mut &'_ str) -> ModalResult<Atom> {
alt((
"#t".map(|_| Atom::Boolean(true)),
"#f".map(|_| Atom::Boolean(false)),
))
.parse_next(i)
}
fn parse_builtin(i: &mut &'_ str) -> ModalResult<BuiltIn> {
// alt gives us the result of first parser that succeeds, of the series of
// parsers we give it
alt((
parse_builtin_op,
// map lets us process the parsed output, in this case we know what we parsed,
// so we ignore the input and return the BuiltIn directly
"not".map(|_| BuiltIn::Not),
))
.parse_next(i)
}
/// Continuing the trend of starting from the simplest piece and building up,
/// we start by creating a parser for the built-in operator functions.
fn parse_builtin_op(i: &mut &'_ str) -> ModalResult<BuiltIn> {
// one_of matches one of the characters we give it
let t = one_of(['+', '-', '*', '/', '=']).parse_next(i)?;
// because we are matching single character tokens, we can do the matching logic
// on the returned value
Ok(match t {
'+' => BuiltIn::Plus,
'-' => BuiltIn::Minus,
'*' => BuiltIn::Times,
'/' => BuiltIn::Divide,
'=' => BuiltIn::Equal,
_ => unreachable!(),
})
}
/// The next easiest thing to parse are keywords.
/// We introduce some error handling combinators: `context` for human readable errors
/// and `cut_err` to prevent back-tracking.
///
/// Put plainly: `preceded(":", cut_err(alpha1))` means that once we see the `:`
/// character, we have to see one or more alphabetic characters or the input is invalid.
fn parse_keyword(i: &mut &'_ str) -> ModalResult<Atom> {
preceded(":", cut_err(alpha1))
.context(StrContext::Label("keyword"))
.map(|sym_str: &str| Atom::Keyword(sym_str.to_owned()))
.parse_next(i)
}
/// We can now use our new combinator to define the rest of the `Expr`s.
///
/// Starting with function application, we can see how the parser mirrors our data
/// definitions: our definition is `Application(Box<Expr>, Vec<Expr>)`, so we know
/// that we need to parse an expression and then parse 0 or more expressions, all
/// wrapped in an S-expression.
///
/// tuples are themselves a parser, used to sequence parsers together, so we can translate this
/// directly and then map over it to transform the output into an `Expr::Application`
fn parse_application(i: &mut &'_ str) -> ModalResult<Expr> {
let application_inner = (parse_expr, repeat(0.., parse_expr))
.map(|(head, tail)| Expr::Application(Box::new(head), tail));
// finally, we wrap it in an s-expression
s_exp(application_inner).parse_next(i)
}
/// Because `Expr::If` and `Expr::IfElse` are so similar (we easily could have
/// defined `Expr::If` to have an `Option` for the else block), we parse both
/// in a single function.
///
/// In fact, we define our parser as if `Expr::If` was defined with an Option in it,
/// we have the `opt` combinator which fits very nicely here.
fn parse_if(i: &mut &'_ str) -> ModalResult<Expr> {
let if_inner = preceded(
// here to avoid ambiguity with other names starting with `if`, if we added
// variables to our language, we say that if must be terminated by at least
// one whitespace character
terminated("if", multispace1),
cut_err((parse_expr, parse_expr, opt(parse_expr))),
)
.map(|(pred, true_branch, maybe_false_branch)| {
if let Some(false_branch) = maybe_false_branch {
Expr::IfElse(
Box::new(pred),
Box::new(true_branch),
Box::new(false_branch),
)
} else {
Expr::If(Box::new(pred), Box::new(true_branch))
}
})
.context(StrContext::Label("if expression"));
s_exp(if_inner).parse_next(i)
}
/// A quoted S-expression is list data structure.
///
/// This example doesn't have the symbol atom, but by adding variables and changing
/// the definition of quote to not always be around an S-expression, we'd get them
/// naturally.
fn parse_quote(i: &mut &'_ str) -> ModalResult<Expr> {
// this should look very straight-forward after all we've done:
// we find the `'` (quote) character, use cut_err to say that we're unambiguously
// looking for an s-expression of 0 or more expressions, and then parse them
preceded("'", cut_err(s_exp(repeat(0.., parse_expr))))
.context(StrContext::Label("quote"))
.map(Expr::Quote)
.parse_next(i)
}
/// Before continuing, we need a helper function to parse lists.
/// A list starts with `(` and ends with a matching `)`.
/// By putting whitespace and newline parsing here, we can avoid having to worry about it
/// in much of the rest of the parser.
//.parse_next/
/// Unlike the previous functions, this function doesn't take or consume input, instead it
/// takes a parsing function and returns a new parsing function.
fn s_exp<'a, O1, F>(inner: F) -> impl ModalParser<&'a str, O1, ContextError>
where
F: ModalParser<&'a str, O1, ContextError>,
{
delimited(
'(',
preceded(multispace0, inner),
cut_err(preceded(multispace0, ')')).context(StrContext::Label("closing paren")),
)
}
/// And that's it!
/// We can now parse our entire lisp language.
///
/// But in order to make it a little more interesting, we can hack together
/// a little interpreter to take an Expr, which is really an
/// [Abstract Syntax Tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree) (AST),
/// and give us something back
///
/// This function tries to reduce the AST.
/// This has to return an Expression rather than an Atom because quoted `s_expressions`
/// can't be reduced
fn eval_expression(e: Expr) -> Option<Expr> {
match e {
// Constants and quoted s-expressions are our base-case
Expr::Constant(_) | Expr::Quote(_) => Some(e),
// we then recursively `eval_expression` in the context of our special forms
// and built-in operators
Expr::If(pred, true_branch) => {
let reduce_pred = eval_expression(*pred)?;
if get_bool_from_expr(reduce_pred)? {
eval_expression(*true_branch)
} else {
None
}
}
Expr::IfElse(pred, true_branch, false_branch) => {
let reduce_pred = eval_expression(*pred)?;
if get_bool_from_expr(reduce_pred)? {
eval_expression(*true_branch)
} else {
eval_expression(*false_branch)
}
}
Expr::Application(head, tail) => {
let reduced_head = eval_expression(*head)?;
let reduced_tail = tail
.into_iter()
.map(eval_expression)
.collect::<Option<Vec<Expr>>>()?;
if let Expr::Constant(Atom::BuiltIn(bi)) = reduced_head {
Some(Expr::Constant(match bi {
BuiltIn::Plus => Atom::Num(
reduced_tail
.into_iter()
.map(get_num_from_expr)
.collect::<Option<Vec<i32>>>()?
.into_iter()
.sum(),
),
BuiltIn::Times => Atom::Num(
reduced_tail
.into_iter()
.map(get_num_from_expr)
.collect::<Option<Vec<i32>>>()?
.into_iter()
.product(),
),
BuiltIn::Equal => Atom::Boolean(
reduced_tail
.iter()
.zip(reduced_tail.iter().skip(1))
.all(|(a, b)| a == b),
),
BuiltIn::Not => {
if reduced_tail.len() != 1 {
return None;
} else {
Atom::Boolean(!get_bool_from_expr(
reduced_tail.first().cloned().unwrap(),
)?)
}
}
BuiltIn::Minus => {
Atom::Num(if let Some(first_elem) = reduced_tail.first().cloned() {
let fe = get_num_from_expr(first_elem)?;
reduced_tail
.into_iter()
.map(get_num_from_expr)
.collect::<Option<Vec<i32>>>()?
.into_iter()
.skip(1)
.fold(fe, |a, b| a - b)
} else {
Default::default()
})
}
BuiltIn::Divide => {
Atom::Num(if let Some(first_elem) = reduced_tail.first().cloned() {
let fe = get_num_from_expr(first_elem)?;
reduced_tail
.into_iter()
.map(get_num_from_expr)
.collect::<Option<Vec<i32>>>()?
.into_iter()
.skip(1)
.fold(fe, |a, b| a / b)
} else {
Default::default()
})
}
}))
} else {
None
}
}
}
}
/// To start we define a couple of helper functions
fn get_num_from_expr(e: Expr) -> Option<i32> {
if let Expr::Constant(Atom::Num(n)) = e {
Some(n)
} else {
None
}
}
fn get_bool_from_expr(e: Expr) -> Option<bool> {
if let Expr::Constant(Atom::Boolean(b)) = e {
Some(b)
} else {
None
}
}
|