1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
|
use crate::check::intrinsicck::InlineAsmCtxt;
use crate::errors::{self, LinkageType};
use super::compare_impl_item::check_type_bounds;
use super::compare_impl_item::{compare_impl_method, compare_impl_ty};
use super::*;
use rustc_attr as attr;
use rustc_errors::{Applicability, ErrorGuaranteed, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::Visitor;
use rustc_hir::{ItemKind, Node, PathSegment};
use rustc_infer::infer::opaque_types::ConstrainOpaqueTypeRegionVisitor;
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::infer::{DefiningAnchor, RegionVariableOrigin, TyCtxtInferExt};
use rustc_infer::traits::{Obligation, TraitEngineExt as _};
use rustc_lint::builtin::REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS;
use rustc_middle::hir::nested_filter;
use rustc_middle::middle::stability::EvalResult;
use rustc_middle::ty::layout::{LayoutError, MAX_SIMD_LANES};
use rustc_middle::ty::subst::GenericArgKind;
use rustc_middle::ty::util::{Discr, IntTypeExt};
use rustc_middle::ty::{
self, AdtDef, ParamEnv, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitableExt,
};
use rustc_session::lint::builtin::{UNINHABITED_STATIC, UNSUPPORTED_CALLING_CONVENTIONS};
use rustc_span::symbol::sym;
use rustc_span::{self, Span};
use rustc_target::abi::FieldIdx;
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits::error_reporting::on_unimplemented::OnUnimplementedDirective;
use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
use rustc_trait_selection::traits::{self, ObligationCtxt, TraitEngine, TraitEngineExt as _};
use std::ops::ControlFlow;
pub fn check_abi(tcx: TyCtxt<'_>, hir_id: hir::HirId, span: Span, abi: Abi) {
match tcx.sess.target.is_abi_supported(abi) {
Some(true) => (),
Some(false) => {
struct_span_err!(
tcx.sess,
span,
E0570,
"`{abi}` is not a supported ABI for the current target",
)
.emit();
}
None => {
tcx.struct_span_lint_hir(
UNSUPPORTED_CALLING_CONVENTIONS,
hir_id,
span,
"use of calling convention not supported on this target",
|lint| lint,
);
}
}
// This ABI is only allowed on function pointers
if abi == Abi::CCmseNonSecureCall {
struct_span_err!(
tcx.sess,
span,
E0781,
"the `\"C-cmse-nonsecure-call\"` ABI is only allowed on function pointers"
)
.emit();
}
}
fn check_struct(tcx: TyCtxt<'_>, def_id: LocalDefId) {
let def = tcx.adt_def(def_id);
let span = tcx.def_span(def_id);
def.destructor(tcx); // force the destructor to be evaluated
if def.repr().simd() {
check_simd(tcx, span, def_id);
}
check_transparent(tcx, def);
check_packed(tcx, span, def);
}
fn check_union(tcx: TyCtxt<'_>, def_id: LocalDefId) {
let def = tcx.adt_def(def_id);
let span = tcx.def_span(def_id);
def.destructor(tcx); // force the destructor to be evaluated
check_transparent(tcx, def);
check_union_fields(tcx, span, def_id);
check_packed(tcx, span, def);
}
/// Check that the fields of the `union` do not need dropping.
fn check_union_fields(tcx: TyCtxt<'_>, span: Span, item_def_id: LocalDefId) -> bool {
let item_type = tcx.type_of(item_def_id).subst_identity();
if let ty::Adt(def, substs) = item_type.kind() {
assert!(def.is_union());
fn allowed_union_field<'tcx>(
ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> bool {
// We don't just accept all !needs_drop fields, due to semver concerns.
match ty.kind() {
ty::Ref(..) => true, // references never drop (even mutable refs, which are non-Copy and hence fail the later check)
ty::Tuple(tys) => {
// allow tuples of allowed types
tys.iter().all(|ty| allowed_union_field(ty, tcx, param_env))
}
ty::Array(elem, _len) => {
// Like `Copy`, we do *not* special-case length 0.
allowed_union_field(*elem, tcx, param_env)
}
_ => {
// Fallback case: allow `ManuallyDrop` and things that are `Copy`,
// also no need to report an error if the type is unresolved.
ty.ty_adt_def().is_some_and(|adt_def| adt_def.is_manually_drop())
|| ty.is_copy_modulo_regions(tcx, param_env)
|| ty.references_error()
}
}
}
let param_env = tcx.param_env(item_def_id);
for field in &def.non_enum_variant().fields {
let field_ty = tcx.normalize_erasing_regions(param_env, field.ty(tcx, substs));
if !allowed_union_field(field_ty, tcx, param_env) {
let (field_span, ty_span) = match tcx.hir().get_if_local(field.did) {
// We are currently checking the type this field came from, so it must be local.
Some(Node::Field(field)) => (field.span, field.ty.span),
_ => unreachable!("mir field has to correspond to hir field"),
};
tcx.sess.emit_err(errors::InvalidUnionField {
field_span,
sugg: errors::InvalidUnionFieldSuggestion {
lo: ty_span.shrink_to_lo(),
hi: ty_span.shrink_to_hi(),
},
note: (),
});
return false;
} else if field_ty.needs_drop(tcx, param_env) {
// This should never happen. But we can get here e.g. in case of name resolution errors.
tcx.sess.delay_span_bug(span, "we should never accept maybe-dropping union fields");
}
}
} else {
span_bug!(span, "unions must be ty::Adt, but got {:?}", item_type.kind());
}
true
}
/// Check that a `static` is inhabited.
fn check_static_inhabited(tcx: TyCtxt<'_>, def_id: LocalDefId) {
// Make sure statics are inhabited.
// Other parts of the compiler assume that there are no uninhabited places. In principle it
// would be enough to check this for `extern` statics, as statics with an initializer will
// have UB during initialization if they are uninhabited, but there also seems to be no good
// reason to allow any statics to be uninhabited.
let ty = tcx.type_of(def_id).subst_identity();
let span = tcx.def_span(def_id);
let layout = match tcx.layout_of(ParamEnv::reveal_all().and(ty)) {
Ok(l) => l,
// Foreign statics that overflow their allowed size should emit an error
Err(LayoutError::SizeOverflow(_))
if matches!(tcx.def_kind(def_id), DefKind::Static(_)
if tcx.def_kind(tcx.local_parent(def_id)) == DefKind::ForeignMod) =>
{
tcx.sess
.struct_span_err(span, "extern static is too large for the current architecture")
.emit();
return;
}
// Generic statics are rejected, but we still reach this case.
Err(e) => {
tcx.sess.delay_span_bug(span, &e.to_string());
return;
}
};
if layout.abi.is_uninhabited() {
tcx.struct_span_lint_hir(
UNINHABITED_STATIC,
tcx.hir().local_def_id_to_hir_id(def_id),
span,
"static of uninhabited type",
|lint| {
lint
.note("uninhabited statics cannot be initialized, and any access would be an immediate error")
},
);
}
}
/// Checks that an opaque type does not contain cycles and does not use `Self` or `T::Foo`
/// projections that would result in "inheriting lifetimes".
fn check_opaque(tcx: TyCtxt<'_>, id: hir::ItemId) {
let item = tcx.hir().item(id);
let hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) = item.kind else {
tcx.sess.delay_span_bug(item.span, "expected opaque item");
return;
};
// HACK(jynelson): trying to infer the type of `impl trait` breaks documenting
// `async-std` (and `pub async fn` in general).
// Since rustdoc doesn't care about the concrete type behind `impl Trait`, just don't look at it!
// See https://github.com/rust-lang/rust/issues/75100
if tcx.sess.opts.actually_rustdoc {
return;
}
let substs = InternalSubsts::identity_for_item(tcx, item.owner_id);
let span = tcx.def_span(item.owner_id.def_id);
if !tcx.features().impl_trait_projections {
check_opaque_for_inheriting_lifetimes(tcx, item.owner_id.def_id, span);
}
if tcx.type_of(item.owner_id.def_id).subst_identity().references_error() {
return;
}
if check_opaque_for_cycles(tcx, item.owner_id.def_id, substs, span, &origin).is_err() {
return;
}
check_opaque_meets_bounds(tcx, item.owner_id.def_id, substs, span, &origin);
}
/// Checks that an opaque type does not use `Self` or `T::Foo` projections that would result
/// in "inheriting lifetimes".
#[instrument(level = "debug", skip(tcx, span))]
pub(super) fn check_opaque_for_inheriting_lifetimes(
tcx: TyCtxt<'_>,
def_id: LocalDefId,
span: Span,
) {
let item = tcx.hir().expect_item(def_id);
debug!(?item, ?span);
struct ProhibitOpaqueVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
opaque_identity_ty: Ty<'tcx>,
parent_count: u32,
references_parent_regions: bool,
selftys: Vec<(Span, Option<String>)>,
}
impl<'tcx> ty::visit::TypeVisitor<TyCtxt<'tcx>> for ProhibitOpaqueVisitor<'tcx> {
type BreakTy = Ty<'tcx>;
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
debug!(?t, "root_visit_ty");
if t == self.opaque_identity_ty {
ControlFlow::Continue(())
} else {
t.visit_with(&mut ConstrainOpaqueTypeRegionVisitor {
tcx: self.tcx,
op: |region| {
if let ty::ReEarlyBound(ty::EarlyBoundRegion { index, .. }) = *region
&& index < self.parent_count
{
self.references_parent_regions= true;
}
},
});
if self.references_parent_regions {
ControlFlow::Break(t)
} else {
ControlFlow::Continue(())
}
}
}
}
impl<'tcx> Visitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_ty(&mut self, arg: &'tcx hir::Ty<'tcx>) {
match arg.kind {
hir::TyKind::Path(hir::QPath::Resolved(None, path)) => match &path.segments {
[PathSegment { res: Res::SelfTyParam { .. }, .. }] => {
let impl_ty_name = None;
self.selftys.push((path.span, impl_ty_name));
}
[PathSegment { res: Res::SelfTyAlias { alias_to: def_id, .. }, .. }] => {
let impl_ty_name = Some(self.tcx.def_path_str(*def_id));
self.selftys.push((path.span, impl_ty_name));
}
_ => {}
},
_ => {}
}
hir::intravisit::walk_ty(self, arg);
}
}
if let ItemKind::OpaqueTy(hir::OpaqueTy {
origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..),
in_trait,
..
}) = item.kind
{
let substs = InternalSubsts::identity_for_item(tcx, def_id);
let opaque_identity_ty = if in_trait && !tcx.lower_impl_trait_in_trait_to_assoc_ty() {
tcx.mk_projection(def_id.to_def_id(), substs)
} else {
tcx.mk_opaque(def_id.to_def_id(), substs)
};
let mut visitor = ProhibitOpaqueVisitor {
opaque_identity_ty,
parent_count: tcx.generics_of(def_id).parent_count as u32,
references_parent_regions: false,
tcx,
selftys: vec![],
};
let prohibit_opaque = tcx
.explicit_item_bounds(def_id)
.iter()
.try_for_each(|(predicate, _)| predicate.visit_with(&mut visitor));
if let Some(ty) = prohibit_opaque.break_value() {
visitor.visit_item(&item);
let is_async = match item.kind {
ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => {
matches!(origin, hir::OpaqueTyOrigin::AsyncFn(..))
}
_ => unreachable!(),
};
let mut err = feature_err(
&tcx.sess.parse_sess,
sym::impl_trait_projections,
span,
&format!(
"`{}` return type cannot contain a projection or `Self` that references \
lifetimes from a parent scope",
if is_async { "async fn" } else { "impl Trait" },
),
);
for (span, name) in visitor.selftys {
err.span_suggestion(
span,
"consider spelling out the type instead",
name.unwrap_or_else(|| format!("{:?}", ty)),
Applicability::MaybeIncorrect,
);
}
err.emit();
}
}
}
/// Checks that an opaque type does not contain cycles.
pub(super) fn check_opaque_for_cycles<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
substs: SubstsRef<'tcx>,
span: Span,
origin: &hir::OpaqueTyOrigin,
) -> Result<(), ErrorGuaranteed> {
if tcx.try_expand_impl_trait_type(def_id.to_def_id(), substs).is_err() {
let reported = match origin {
hir::OpaqueTyOrigin::AsyncFn(..) => async_opaque_type_cycle_error(tcx, span),
_ => opaque_type_cycle_error(tcx, def_id, span),
};
Err(reported)
} else {
Ok(())
}
}
/// Check that the concrete type behind `impl Trait` actually implements `Trait`.
///
/// This is mostly checked at the places that specify the opaque type, but we
/// check those cases in the `param_env` of that function, which may have
/// bounds not on this opaque type:
///
/// ```ignore (illustrative)
/// type X<T> = impl Clone;
/// fn f<T: Clone>(t: T) -> X<T> {
/// t
/// }
/// ```
///
/// Without this check the above code is incorrectly accepted: we would ICE if
/// some tried, for example, to clone an `Option<X<&mut ()>>`.
#[instrument(level = "debug", skip(tcx))]
fn check_opaque_meets_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
substs: SubstsRef<'tcx>,
span: Span,
origin: &hir::OpaqueTyOrigin,
) {
let defining_use_anchor = match *origin {
hir::OpaqueTyOrigin::FnReturn(did) | hir::OpaqueTyOrigin::AsyncFn(did) => did,
hir::OpaqueTyOrigin::TyAlias => def_id,
};
let param_env = tcx.param_env(defining_use_anchor);
let infcx = tcx
.infer_ctxt()
.with_opaque_type_inference(DefiningAnchor::Bind(defining_use_anchor))
.build();
let ocx = ObligationCtxt::new(&infcx);
let opaque_ty = tcx.mk_opaque(def_id.to_def_id(), substs);
// `ReErased` regions appear in the "parent_substs" of closures/generators.
// We're ignoring them here and replacing them with fresh region variables.
// See tests in ui/type-alias-impl-trait/closure_{parent_substs,wf_outlives}.rs.
//
// FIXME: Consider wrapping the hidden type in an existential `Binder` and instantiating it
// here rather than using ReErased.
let hidden_ty = tcx.type_of(def_id.to_def_id()).subst(tcx, substs);
let hidden_ty = tcx.fold_regions(hidden_ty, |re, _dbi| match re.kind() {
ty::ReErased => infcx.next_region_var(RegionVariableOrigin::MiscVariable(span)),
_ => re,
});
let misc_cause = traits::ObligationCause::misc(span, def_id);
match ocx.eq(&misc_cause, param_env, opaque_ty, hidden_ty) {
Ok(()) => {}
Err(ty_err) => {
let ty_err = ty_err.to_string(tcx);
tcx.sess.delay_span_bug(
span,
&format!("could not unify `{hidden_ty}` with revealed type:\n{ty_err}"),
);
}
}
// Additionally require the hidden type to be well-formed with only the generics of the opaque type.
// Defining use functions may have more bounds than the opaque type, which is ok, as long as the
// hidden type is well formed even without those bounds.
let predicate = ty::Binder::dummy(ty::PredicateKind::WellFormed(hidden_ty.into()));
ocx.register_obligation(Obligation::new(tcx, misc_cause, param_env, predicate));
// Check that all obligations are satisfied by the implementation's
// version.
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
infcx.err_ctxt().report_fulfillment_errors(&errors);
}
match origin {
// Checked when type checking the function containing them.
hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..) => {}
// Can have different predicates to their defining use
hir::OpaqueTyOrigin::TyAlias => {
let outlives_env = OutlivesEnvironment::new(param_env);
let _ = ocx.resolve_regions_and_report_errors(defining_use_anchor, &outlives_env);
}
}
// Clean up after ourselves
let _ = infcx.take_opaque_types();
}
fn is_enum_of_nonnullable_ptr<'tcx>(
tcx: TyCtxt<'tcx>,
adt_def: AdtDef<'tcx>,
substs: SubstsRef<'tcx>,
) -> bool {
if adt_def.repr().inhibit_enum_layout_opt() {
return false;
}
let [var_one, var_two] = &adt_def.variants().raw[..] else {
return false;
};
let (([], [field]) | ([field], [])) = (&var_one.fields.raw[..], &var_two.fields.raw[..]) else {
return false;
};
matches!(field.ty(tcx, substs).kind(), ty::FnPtr(..) | ty::Ref(..))
}
fn check_static_linkage(tcx: TyCtxt<'_>, def_id: LocalDefId) {
if tcx.codegen_fn_attrs(def_id).import_linkage.is_some() {
if match tcx.type_of(def_id).subst_identity().kind() {
ty::RawPtr(_) => false,
ty::Adt(adt_def, substs) => !is_enum_of_nonnullable_ptr(tcx, *adt_def, *substs),
_ => true,
} {
tcx.sess.emit_err(LinkageType { span: tcx.def_span(def_id) });
}
}
}
fn check_item_type(tcx: TyCtxt<'_>, id: hir::ItemId) {
debug!(
"check_item_type(it.def_id={:?}, it.name={})",
id.owner_id,
tcx.def_path_str(id.owner_id.to_def_id())
);
let _indenter = indenter();
match tcx.def_kind(id.owner_id) {
DefKind::Static(..) => {
tcx.ensure().typeck(id.owner_id.def_id);
maybe_check_static_with_link_section(tcx, id.owner_id.def_id);
check_static_inhabited(tcx, id.owner_id.def_id);
check_static_linkage(tcx, id.owner_id.def_id);
}
DefKind::Const => {
tcx.ensure().typeck(id.owner_id.def_id);
}
DefKind::Enum => {
check_enum(tcx, id.owner_id.def_id);
}
DefKind::Fn => {} // entirely within check_item_body
DefKind::Impl { of_trait } => {
if of_trait && let Some(impl_trait_ref) = tcx.impl_trait_ref(id.owner_id) {
check_impl_items_against_trait(
tcx,
id.owner_id.def_id,
impl_trait_ref.subst_identity(),
);
check_on_unimplemented(tcx, id);
}
}
DefKind::Trait => {
let assoc_items = tcx.associated_items(id.owner_id);
check_on_unimplemented(tcx, id);
for &assoc_item in assoc_items.in_definition_order() {
match assoc_item.kind {
ty::AssocKind::Fn => {
let abi = tcx.fn_sig(assoc_item.def_id).skip_binder().abi();
fn_maybe_err(tcx, assoc_item.ident(tcx).span, abi);
}
ty::AssocKind::Type if assoc_item.defaultness(tcx).has_value() => {
let trait_substs =
InternalSubsts::identity_for_item(tcx, id.owner_id);
let _: Result<_, rustc_errors::ErrorGuaranteed> = check_type_bounds(
tcx,
assoc_item,
assoc_item,
tcx.mk_trait_ref(id.owner_id.to_def_id(), trait_substs),
);
}
_ => {}
}
}
}
DefKind::Struct => {
check_struct(tcx, id.owner_id.def_id);
}
DefKind::Union => {
check_union(tcx, id.owner_id.def_id);
}
DefKind::OpaqueTy => {
let opaque = tcx.hir().expect_item(id.owner_id.def_id).expect_opaque_ty();
if let hir::OpaqueTyOrigin::FnReturn(fn_def_id) | hir::OpaqueTyOrigin::AsyncFn(fn_def_id) = opaque.origin
&& let hir::Node::TraitItem(trait_item) = tcx.hir().get_by_def_id(fn_def_id)
&& let (_, hir::TraitFn::Required(..)) = trait_item.expect_fn()
{
// Skip opaques from RPIT in traits with no default body.
} else {
check_opaque(tcx, id);
}
}
DefKind::ImplTraitPlaceholder => {
let parent = tcx.impl_trait_in_trait_parent_fn(id.owner_id.to_def_id());
// Only check the validity of this opaque type if the function has a default body
if let hir::Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
..
}) = tcx.hir().get_by_def_id(parent.expect_local())
{
check_opaque(tcx, id);
}
}
DefKind::TyAlias => {
let pty_ty = tcx.type_of(id.owner_id).subst_identity();
let generics = tcx.generics_of(id.owner_id);
check_type_params_are_used(tcx, &generics, pty_ty);
}
DefKind::ForeignMod => {
let it = tcx.hir().item(id);
let hir::ItemKind::ForeignMod { abi, items } = it.kind else {
return;
};
check_abi(tcx, it.hir_id(), it.span, abi);
match abi {
Abi::RustIntrinsic => {
for item in items {
let item = tcx.hir().foreign_item(item.id);
intrinsic::check_intrinsic_type(tcx, item);
}
}
Abi::PlatformIntrinsic => {
for item in items {
let item = tcx.hir().foreign_item(item.id);
intrinsic::check_platform_intrinsic_type(tcx, item);
}
}
_ => {
for item in items {
let def_id = item.id.owner_id.def_id;
let generics = tcx.generics_of(def_id);
let own_counts = generics.own_counts();
if generics.params.len() - own_counts.lifetimes != 0 {
let (kinds, kinds_pl, egs) = match (own_counts.types, own_counts.consts)
{
(_, 0) => ("type", "types", Some("u32")),
// We don't specify an example value, because we can't generate
// a valid value for any type.
(0, _) => ("const", "consts", None),
_ => ("type or const", "types or consts", None),
};
struct_span_err!(
tcx.sess,
item.span,
E0044,
"foreign items may not have {kinds} parameters",
)
.span_label(item.span, &format!("can't have {kinds} parameters"))
.help(
// FIXME: once we start storing spans for type arguments, turn this
// into a suggestion.
&format!(
"replace the {} parameters with concrete {}{}",
kinds,
kinds_pl,
egs.map(|egs| format!(" like `{}`", egs)).unwrap_or_default(),
),
)
.emit();
}
let item = tcx.hir().foreign_item(item.id);
match &item.kind {
hir::ForeignItemKind::Fn(fn_decl, _, _) => {
require_c_abi_if_c_variadic(tcx, fn_decl, abi, item.span);
}
hir::ForeignItemKind::Static(..) => {
check_static_inhabited(tcx, def_id);
check_static_linkage(tcx, def_id);
}
_ => {}
}
}
}
}
}
DefKind::GlobalAsm => {
let it = tcx.hir().item(id);
let hir::ItemKind::GlobalAsm(asm) = it.kind else { span_bug!(it.span, "DefKind::GlobalAsm but got {:#?}", it) };
InlineAsmCtxt::new_global_asm(tcx).check_asm(asm, id.owner_id.def_id);
}
_ => {}
}
}
pub(super) fn check_on_unimplemented(tcx: TyCtxt<'_>, item: hir::ItemId) {
// an error would be reported if this fails.
let _ = OnUnimplementedDirective::of_item(tcx, item.owner_id.to_def_id());
}
pub(super) fn check_specialization_validity<'tcx>(
tcx: TyCtxt<'tcx>,
trait_def: &ty::TraitDef,
trait_item: ty::AssocItem,
impl_id: DefId,
impl_item: DefId,
) {
let Ok(ancestors) = trait_def.ancestors(tcx, impl_id) else { return };
let mut ancestor_impls = ancestors.skip(1).filter_map(|parent| {
if parent.is_from_trait() {
None
} else {
Some((parent, parent.item(tcx, trait_item.def_id)))
}
});
let opt_result = ancestor_impls.find_map(|(parent_impl, parent_item)| {
match parent_item {
// Parent impl exists, and contains the parent item we're trying to specialize, but
// doesn't mark it `default`.
Some(parent_item) if traits::impl_item_is_final(tcx, &parent_item) => {
Some(Err(parent_impl.def_id()))
}
// Parent impl contains item and makes it specializable.
Some(_) => Some(Ok(())),
// Parent impl doesn't mention the item. This means it's inherited from the
// grandparent. In that case, if parent is a `default impl`, inherited items use the
// "defaultness" from the grandparent, else they are final.
None => {
if tcx.impl_defaultness(parent_impl.def_id()).is_default() {
None
} else {
Some(Err(parent_impl.def_id()))
}
}
}
});
// If `opt_result` is `None`, we have only encountered `default impl`s that don't contain the
// item. This is allowed, the item isn't actually getting specialized here.
let result = opt_result.unwrap_or(Ok(()));
if let Err(parent_impl) = result {
report_forbidden_specialization(tcx, impl_item, parent_impl);
}
}
fn check_impl_items_against_trait<'tcx>(
tcx: TyCtxt<'tcx>,
impl_id: LocalDefId,
impl_trait_ref: ty::TraitRef<'tcx>,
) {
// If the trait reference itself is erroneous (so the compilation is going
// to fail), skip checking the items here -- the `impl_item` table in `tcx`
// isn't populated for such impls.
if impl_trait_ref.references_error() {
return;
}
let impl_item_refs = tcx.associated_item_def_ids(impl_id);
// Negative impls are not expected to have any items
match tcx.impl_polarity(impl_id) {
ty::ImplPolarity::Reservation | ty::ImplPolarity::Positive => {}
ty::ImplPolarity::Negative => {
if let [first_item_ref, ..] = impl_item_refs {
let first_item_span = tcx.def_span(first_item_ref);
struct_span_err!(
tcx.sess,
first_item_span,
E0749,
"negative impls cannot have any items"
)
.emit();
}
return;
}
}
let trait_def = tcx.trait_def(impl_trait_ref.def_id);
for &impl_item in impl_item_refs {
let ty_impl_item = tcx.associated_item(impl_item);
let ty_trait_item = if let Some(trait_item_id) = ty_impl_item.trait_item_def_id {
tcx.associated_item(trait_item_id)
} else {
// Checked in `associated_item`.
tcx.sess.delay_span_bug(tcx.def_span(impl_item), "missing associated item in trait");
continue;
};
match ty_impl_item.kind {
ty::AssocKind::Const => {
let _ = tcx.compare_impl_const((
impl_item.expect_local(),
ty_impl_item.trait_item_def_id.unwrap(),
));
}
ty::AssocKind::Fn => {
compare_impl_method(tcx, ty_impl_item, ty_trait_item, impl_trait_ref);
}
ty::AssocKind::Type => {
compare_impl_ty(tcx, ty_impl_item, ty_trait_item, impl_trait_ref);
}
}
check_specialization_validity(
tcx,
trait_def,
ty_trait_item,
impl_id.to_def_id(),
impl_item,
);
}
if let Ok(ancestors) = trait_def.ancestors(tcx, impl_id.to_def_id()) {
// Check for missing items from trait
let mut missing_items = Vec::new();
let mut must_implement_one_of: Option<&[Ident]> =
trait_def.must_implement_one_of.as_deref();
for &trait_item_id in tcx.associated_item_def_ids(impl_trait_ref.def_id) {
let leaf_def = ancestors.leaf_def(tcx, trait_item_id);
let is_implemented = leaf_def
.as_ref()
.map_or(false, |node_item| node_item.item.defaultness(tcx).has_value());
if !is_implemented && tcx.impl_defaultness(impl_id).is_final() {
missing_items.push(tcx.associated_item(trait_item_id));
}
// true if this item is specifically implemented in this impl
let is_implemented_here = leaf_def
.as_ref()
.map_or(false, |node_item| !node_item.defining_node.is_from_trait());
if !is_implemented_here {
let full_impl_span =
tcx.hir().span_with_body(tcx.hir().local_def_id_to_hir_id(impl_id));
match tcx.eval_default_body_stability(trait_item_id, full_impl_span) {
EvalResult::Deny { feature, reason, issue, .. } => default_body_is_unstable(
tcx,
full_impl_span,
trait_item_id,
feature,
reason,
issue,
),
// Unmarked default bodies are considered stable (at least for now).
EvalResult::Allow | EvalResult::Unmarked => {}
}
}
if let Some(required_items) = &must_implement_one_of {
if is_implemented_here {
let trait_item = tcx.associated_item(trait_item_id);
if required_items.contains(&trait_item.ident(tcx)) {
must_implement_one_of = None;
}
}
}
if let Some(leaf_def) = &leaf_def
&& !leaf_def.is_final()
&& let def_id = leaf_def.item.def_id
&& tcx.impl_method_has_trait_impl_trait_tys(def_id)
{
let def_kind = tcx.def_kind(def_id);
let descr = tcx.def_kind_descr(def_kind, def_id);
let (msg, feature) = if tcx.asyncness(def_id).is_async() {
(
format!("async {descr} in trait cannot be specialized"),
sym::async_fn_in_trait,
)
} else {
(
format!(
"{descr} with return-position `impl Trait` in trait cannot be specialized"
),
sym::return_position_impl_trait_in_trait,
)
};
tcx.sess
.struct_span_err(tcx.def_span(def_id), msg)
.note(format!(
"specialization behaves in inconsistent and \
surprising ways with `#![feature({feature})]`, \
and for now is disallowed"
))
.emit();
}
}
if !missing_items.is_empty() {
let full_impl_span =
tcx.hir().span_with_body(tcx.hir().local_def_id_to_hir_id(impl_id));
missing_items_err(tcx, tcx.def_span(impl_id), &missing_items, full_impl_span);
}
if let Some(missing_items) = must_implement_one_of {
let attr_span = tcx
.get_attr(impl_trait_ref.def_id, sym::rustc_must_implement_one_of)
.map(|attr| attr.span);
missing_items_must_implement_one_of_err(
tcx,
tcx.def_span(impl_id),
missing_items,
attr_span,
);
}
}
}
pub fn check_simd(tcx: TyCtxt<'_>, sp: Span, def_id: LocalDefId) {
let t = tcx.type_of(def_id).subst_identity();
if let ty::Adt(def, substs) = t.kind()
&& def.is_struct()
{
let fields = &def.non_enum_variant().fields;
if fields.is_empty() {
struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
return;
}
let e = fields[FieldIdx::from_u32(0)].ty(tcx, substs);
if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
.span_label(sp, "SIMD elements must have the same type")
.emit();
return;
}
let len = if let ty::Array(_ty, c) = e.kind() {
c.try_eval_target_usize(tcx, tcx.param_env(def.did()))
} else {
Some(fields.len() as u64)
};
if let Some(len) = len {
if len == 0 {
struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
return;
} else if len > MAX_SIMD_LANES {
struct_span_err!(
tcx.sess,
sp,
E0075,
"SIMD vector cannot have more than {MAX_SIMD_LANES} elements",
)
.emit();
return;
}
}
// Check that we use types valid for use in the lanes of a SIMD "vector register"
// These are scalar types which directly match a "machine" type
// Yes: Integers, floats, "thin" pointers
// No: char, "fat" pointers, compound types
match e.kind() {
ty::Param(_) => (), // pass struct<T>(T, T, T, T) through, let monomorphization catch errors
ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_) => (), // struct(u8, u8, u8, u8) is ok
ty::Array(t, _) if matches!(t.kind(), ty::Param(_)) => (), // pass struct<T>([T; N]) through, let monomorphization catch errors
ty::Array(t, _clen)
if matches!(
t.kind(),
ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_)
) =>
{ /* struct([f32; 4]) is ok */ }
_ => {
struct_span_err!(
tcx.sess,
sp,
E0077,
"SIMD vector element type should be a \
primitive scalar (integer/float/pointer) type"
)
.emit();
return;
}
}
}
}
pub(super) fn check_packed(tcx: TyCtxt<'_>, sp: Span, def: ty::AdtDef<'_>) {
let repr = def.repr();
if repr.packed() {
for attr in tcx.get_attrs(def.did(), sym::repr) {
for r in attr::parse_repr_attr(&tcx.sess, attr) {
if let attr::ReprPacked(pack) = r
&& let Some(repr_pack) = repr.pack
&& pack as u64 != repr_pack.bytes()
{
struct_span_err!(
tcx.sess,
sp,
E0634,
"type has conflicting packed representation hints"
)
.emit();
}
}
}
if repr.align.is_some() {
struct_span_err!(
tcx.sess,
sp,
E0587,
"type has conflicting packed and align representation hints"
)
.emit();
} else {
if let Some(def_spans) = check_packed_inner(tcx, def.did(), &mut vec![]) {
let mut err = struct_span_err!(
tcx.sess,
sp,
E0588,
"packed type cannot transitively contain a `#[repr(align)]` type"
);
err.span_note(
tcx.def_span(def_spans[0].0),
&format!(
"`{}` has a `#[repr(align)]` attribute",
tcx.item_name(def_spans[0].0)
),
);
if def_spans.len() > 2 {
let mut first = true;
for (adt_def, span) in def_spans.iter().skip(1).rev() {
let ident = tcx.item_name(*adt_def);
err.span_note(
*span,
&if first {
format!(
"`{}` contains a field of type `{}`",
tcx.type_of(def.did()).subst_identity(),
ident
)
} else {
format!("...which contains a field of type `{ident}`")
},
);
first = false;
}
}
err.emit();
}
}
}
}
pub(super) fn check_packed_inner(
tcx: TyCtxt<'_>,
def_id: DefId,
stack: &mut Vec<DefId>,
) -> Option<Vec<(DefId, Span)>> {
if let ty::Adt(def, substs) = tcx.type_of(def_id).subst_identity().kind() {
if def.is_struct() || def.is_union() {
if def.repr().align.is_some() {
return Some(vec![(def.did(), DUMMY_SP)]);
}
stack.push(def_id);
for field in &def.non_enum_variant().fields {
if let ty::Adt(def, _) = field.ty(tcx, substs).kind()
&& !stack.contains(&def.did())
&& let Some(mut defs) = check_packed_inner(tcx, def.did(), stack)
{
defs.push((def.did(), field.ident(tcx).span));
return Some(defs);
}
}
stack.pop();
}
}
None
}
pub(super) fn check_transparent<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>) {
if !adt.repr().transparent() {
return;
}
if adt.is_union() && !tcx.features().transparent_unions {
feature_err(
&tcx.sess.parse_sess,
sym::transparent_unions,
tcx.def_span(adt.did()),
"transparent unions are unstable",
)
.emit();
}
if adt.variants().len() != 1 {
bad_variant_count(tcx, adt, tcx.def_span(adt.did()), adt.did());
// Don't bother checking the fields.
return;
}
// For each field, figure out if it's known to be a ZST and align(1), with "known"
// respecting #[non_exhaustive] attributes.
let field_infos = adt.all_fields().map(|field| {
let ty = field.ty(tcx, InternalSubsts::identity_for_item(tcx, field.did));
let param_env = tcx.param_env(field.did);
let layout = tcx.layout_of(param_env.and(ty));
// We are currently checking the type this field came from, so it must be local
let span = tcx.hir().span_if_local(field.did).unwrap();
let zst = layout.map_or(false, |layout| layout.is_zst());
let align1 = layout.map_or(false, |layout| layout.align.abi.bytes() == 1);
if !zst {
return (span, zst, align1, None);
}
fn check_non_exhaustive<'tcx>(
tcx: TyCtxt<'tcx>,
t: Ty<'tcx>,
) -> ControlFlow<(&'static str, DefId, SubstsRef<'tcx>, bool)> {
match t.kind() {
ty::Tuple(list) => list.iter().try_for_each(|t| check_non_exhaustive(tcx, t)),
ty::Array(ty, _) => check_non_exhaustive(tcx, *ty),
ty::Adt(def, subst) => {
if !def.did().is_local() {
let non_exhaustive = def.is_variant_list_non_exhaustive()
|| def
.variants()
.iter()
.any(ty::VariantDef::is_field_list_non_exhaustive);
let has_priv = def.all_fields().any(|f| !f.vis.is_public());
if non_exhaustive || has_priv {
return ControlFlow::Break((
def.descr(),
def.did(),
subst,
non_exhaustive,
));
}
}
def.all_fields()
.map(|field| field.ty(tcx, subst))
.try_for_each(|t| check_non_exhaustive(tcx, t))
}
_ => ControlFlow::Continue(()),
}
}
(span, zst, align1, check_non_exhaustive(tcx, ty).break_value())
});
let non_zst_fields = field_infos
.clone()
.filter_map(|(span, zst, _align1, _non_exhaustive)| if !zst { Some(span) } else { None });
let non_zst_count = non_zst_fields.clone().count();
if non_zst_count >= 2 {
bad_non_zero_sized_fields(tcx, adt, non_zst_count, non_zst_fields, tcx.def_span(adt.did()));
}
let incompatible_zst_fields =
field_infos.clone().filter(|(_, _, _, opt)| opt.is_some()).count();
let incompat = incompatible_zst_fields + non_zst_count >= 2 && non_zst_count < 2;
for (span, zst, align1, non_exhaustive) in field_infos {
if zst && !align1 {
struct_span_err!(
tcx.sess,
span,
E0691,
"zero-sized field in transparent {} has alignment larger than 1",
adt.descr(),
)
.span_label(span, "has alignment larger than 1")
.emit();
}
if incompat && let Some((descr, def_id, substs, non_exhaustive)) = non_exhaustive {
tcx.struct_span_lint_hir(
REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS,
tcx.hir().local_def_id_to_hir_id(adt.did().expect_local()),
span,
"zero-sized fields in `repr(transparent)` cannot contain external non-exhaustive types",
|lint| {
let note = if non_exhaustive {
"is marked with `#[non_exhaustive]`"
} else {
"contains private fields"
};
let field_ty = tcx.def_path_str_with_substs(def_id, substs);
lint
.note(format!("this {descr} contains `{field_ty}`, which {note}, \
and makes it not a breaking change to become non-zero-sized in the future."))
},
)
}
}
}
#[allow(trivial_numeric_casts)]
fn check_enum(tcx: TyCtxt<'_>, def_id: LocalDefId) {
let def = tcx.adt_def(def_id);
def.destructor(tcx); // force the destructor to be evaluated
if def.variants().is_empty() {
if let Some(attr) = tcx.get_attrs(def_id, sym::repr).next() {
struct_span_err!(
tcx.sess,
attr.span,
E0084,
"unsupported representation for zero-variant enum"
)
.span_label(tcx.def_span(def_id), "zero-variant enum")
.emit();
}
}
let repr_type_ty = def.repr().discr_type().to_ty(tcx);
if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
if !tcx.features().repr128 {
feature_err(
&tcx.sess.parse_sess,
sym::repr128,
tcx.def_span(def_id),
"repr with 128-bit type is unstable",
)
.emit();
}
}
for v in def.variants() {
if let ty::VariantDiscr::Explicit(discr_def_id) = v.discr {
tcx.ensure().typeck(discr_def_id.expect_local());
}
}
if def.repr().int.is_none() {
let is_unit = |var: &ty::VariantDef| matches!(var.ctor_kind(), Some(CtorKind::Const));
let has_disr = |var: &ty::VariantDef| matches!(var.discr, ty::VariantDiscr::Explicit(_));
let has_non_units = def.variants().iter().any(|var| !is_unit(var));
let disr_units = def.variants().iter().any(|var| is_unit(&var) && has_disr(&var));
let disr_non_unit = def.variants().iter().any(|var| !is_unit(&var) && has_disr(&var));
if disr_non_unit || (disr_units && has_non_units) {
let mut err = struct_span_err!(
tcx.sess,
tcx.def_span(def_id),
E0732,
"`#[repr(inttype)]` must be specified"
);
err.emit();
}
}
detect_discriminant_duplicate(tcx, def);
check_transparent(tcx, def);
}
/// Part of enum check. Given the discriminants of an enum, errors if two or more discriminants are equal
fn detect_discriminant_duplicate<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>) {
// Helper closure to reduce duplicate code. This gets called everytime we detect a duplicate.
// Here `idx` refers to the order of which the discriminant appears, and its index in `vs`
let report = |dis: Discr<'tcx>, idx, err: &mut Diagnostic| {
let var = adt.variant(idx); // HIR for the duplicate discriminant
let (span, display_discr) = match var.discr {
ty::VariantDiscr::Explicit(discr_def_id) => {
// In the case the discriminant is both a duplicate and overflowed, let the user know
if let hir::Node::AnonConst(expr) = tcx.hir().get_by_def_id(discr_def_id.expect_local())
&& let hir::ExprKind::Lit(lit) = &tcx.hir().body(expr.body).value.kind
&& let rustc_ast::LitKind::Int(lit_value, _int_kind) = &lit.node
&& *lit_value != dis.val
{
(tcx.def_span(discr_def_id), format!("`{dis}` (overflowed from `{lit_value}`)"))
} else {
// Otherwise, format the value as-is
(tcx.def_span(discr_def_id), format!("`{dis}`"))
}
}
// This should not happen.
ty::VariantDiscr::Relative(0) => (tcx.def_span(var.def_id), format!("`{dis}`")),
ty::VariantDiscr::Relative(distance_to_explicit) => {
// At this point we know this discriminant is a duplicate, and was not explicitly
// assigned by the user. Here we iterate backwards to fetch the HIR for the last
// explicitly assigned discriminant, and letting the user know that this was the
// increment startpoint, and how many steps from there leading to the duplicate
if let Some(explicit_idx) =
idx.as_u32().checked_sub(distance_to_explicit).map(VariantIdx::from_u32)
{
let explicit_variant = adt.variant(explicit_idx);
let ve_ident = var.name;
let ex_ident = explicit_variant.name;
let sp = if distance_to_explicit > 1 { "variants" } else { "variant" };
err.span_label(
tcx.def_span(explicit_variant.def_id),
format!(
"discriminant for `{ve_ident}` incremented from this startpoint \
(`{ex_ident}` + {distance_to_explicit} {sp} later \
=> `{ve_ident}` = {dis})"
),
);
}
(tcx.def_span(var.def_id), format!("`{dis}`"))
}
};
err.span_label(span, format!("{display_discr} assigned here"));
};
let mut discrs = adt.discriminants(tcx).collect::<Vec<_>>();
// Here we loop through the discriminants, comparing each discriminant to another.
// When a duplicate is detected, we instantiate an error and point to both
// initial and duplicate value. The duplicate discriminant is then discarded by swapping
// it with the last element and decrementing the `vec.len` (which is why we have to evaluate
// `discrs.len()` anew every iteration, and why this could be tricky to do in a functional
// style as we are mutating `discrs` on the fly).
let mut i = 0;
while i < discrs.len() {
let var_i_idx = discrs[i].0;
let mut error: Option<DiagnosticBuilder<'_, _>> = None;
let mut o = i + 1;
while o < discrs.len() {
let var_o_idx = discrs[o].0;
if discrs[i].1.val == discrs[o].1.val {
let err = error.get_or_insert_with(|| {
let mut ret = struct_span_err!(
tcx.sess,
tcx.def_span(adt.did()),
E0081,
"discriminant value `{}` assigned more than once",
discrs[i].1,
);
report(discrs[i].1, var_i_idx, &mut ret);
ret
});
report(discrs[o].1, var_o_idx, err);
// Safe to unwrap here, as we wouldn't reach this point if `discrs` was empty
discrs[o] = *discrs.last().unwrap();
discrs.pop();
} else {
o += 1;
}
}
if let Some(mut e) = error {
e.emit();
}
i += 1;
}
}
pub(super) fn check_type_params_are_used<'tcx>(
tcx: TyCtxt<'tcx>,
generics: &ty::Generics,
ty: Ty<'tcx>,
) {
debug!("check_type_params_are_used(generics={:?}, ty={:?})", generics, ty);
assert_eq!(generics.parent, None);
if generics.own_counts().types == 0 {
return;
}
let mut params_used = BitSet::new_empty(generics.params.len());
if ty.references_error() {
// If there is already another error, do not emit
// an error for not using a type parameter.
assert!(tcx.sess.has_errors().is_some());
return;
}
for leaf in ty.walk() {
if let GenericArgKind::Type(leaf_ty) = leaf.unpack()
&& let ty::Param(param) = leaf_ty.kind()
{
debug!("found use of ty param {:?}", param);
params_used.insert(param.index);
}
}
for param in &generics.params {
if !params_used.contains(param.index)
&& let ty::GenericParamDefKind::Type { .. } = param.kind
{
let span = tcx.def_span(param.def_id);
struct_span_err!(
tcx.sess,
span,
E0091,
"type parameter `{}` is unused",
param.name,
)
.span_label(span, "unused type parameter")
.emit();
}
}
}
pub(super) fn check_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
let module = tcx.hir_module_items(module_def_id);
for id in module.items() {
check_item_type(tcx, id);
}
}
fn async_opaque_type_cycle_error(tcx: TyCtxt<'_>, span: Span) -> ErrorGuaranteed {
struct_span_err!(tcx.sess, span, E0733, "recursion in an `async fn` requires boxing")
.span_label(span, "recursive `async fn`")
.note("a recursive `async fn` must be rewritten to return a boxed `dyn Future`")
.note(
"consider using the `async_recursion` crate: https://crates.io/crates/async_recursion",
)
.emit()
}
/// Emit an error for recursive opaque types.
///
/// If this is a return `impl Trait`, find the item's return expressions and point at them. For
/// direct recursion this is enough, but for indirect recursion also point at the last intermediary
/// `impl Trait`.
///
/// If all the return expressions evaluate to `!`, then we explain that the error will go away
/// after changing it. This can happen when a user uses `panic!()` or similar as a placeholder.
fn opaque_type_cycle_error(
tcx: TyCtxt<'_>,
opaque_def_id: LocalDefId,
span: Span,
) -> ErrorGuaranteed {
let mut err = struct_span_err!(tcx.sess, span, E0720, "cannot resolve opaque type");
let mut label = false;
if let Some((def_id, visitor)) = get_owner_return_paths(tcx, opaque_def_id) {
let typeck_results = tcx.typeck(def_id);
if visitor
.returns
.iter()
.filter_map(|expr| typeck_results.node_type_opt(expr.hir_id))
.all(|ty| matches!(ty.kind(), ty::Never))
{
let spans = visitor
.returns
.iter()
.filter(|expr| typeck_results.node_type_opt(expr.hir_id).is_some())
.map(|expr| expr.span)
.collect::<Vec<Span>>();
let span_len = spans.len();
if span_len == 1 {
err.span_label(spans[0], "this returned value is of `!` type");
} else {
let mut multispan: MultiSpan = spans.clone().into();
for span in spans {
multispan.push_span_label(span, "this returned value is of `!` type");
}
err.span_note(multispan, "these returned values have a concrete \"never\" type");
}
err.help("this error will resolve once the item's body returns a concrete type");
} else {
let mut seen = FxHashSet::default();
seen.insert(span);
err.span_label(span, "recursive opaque type");
label = true;
for (sp, ty) in visitor
.returns
.iter()
.filter_map(|e| typeck_results.node_type_opt(e.hir_id).map(|t| (e.span, t)))
.filter(|(_, ty)| !matches!(ty.kind(), ty::Never))
{
#[derive(Default)]
struct OpaqueTypeCollector {
opaques: Vec<DefId>,
closures: Vec<DefId>,
}
impl<'tcx> ty::visit::TypeVisitor<TyCtxt<'tcx>> for OpaqueTypeCollector {
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
match *t.kind() {
ty::Alias(ty::Opaque, ty::AliasTy { def_id: def, .. }) => {
self.opaques.push(def);
ControlFlow::Continue(())
}
ty::Closure(def_id, ..) | ty::Generator(def_id, ..) => {
self.closures.push(def_id);
t.super_visit_with(self)
}
_ => t.super_visit_with(self),
}
}
}
let mut visitor = OpaqueTypeCollector::default();
ty.visit_with(&mut visitor);
for def_id in visitor.opaques {
let ty_span = tcx.def_span(def_id);
if !seen.contains(&ty_span) {
let descr = if ty.is_impl_trait() { "opaque " } else { "" };
err.span_label(ty_span, &format!("returning this {descr}type `{ty}`"));
seen.insert(ty_span);
}
err.span_label(sp, &format!("returning here with type `{ty}`"));
}
for closure_def_id in visitor.closures {
let Some(closure_local_did) = closure_def_id.as_local() else { continue; };
let typeck_results = tcx.typeck(closure_local_did);
let mut label_match = |ty: Ty<'_>, span| {
for arg in ty.walk() {
if let ty::GenericArgKind::Type(ty) = arg.unpack()
&& let ty::Alias(ty::Opaque, ty::AliasTy { def_id: captured_def_id, .. }) = *ty.kind()
&& captured_def_id == opaque_def_id.to_def_id()
{
err.span_label(
span,
format!(
"{} captures itself here",
tcx.def_descr(closure_def_id)
),
);
}
}
};
// Label any closure upvars that capture the opaque
for capture in typeck_results.closure_min_captures_flattened(closure_local_did)
{
label_match(capture.place.ty(), capture.get_path_span(tcx));
}
// Label any generator locals that capture the opaque
for interior_ty in
typeck_results.generator_interior_types.as_ref().skip_binder()
{
label_match(interior_ty.ty, interior_ty.span);
}
if tcx.sess.opts.unstable_opts.drop_tracking_mir
&& let DefKind::Generator = tcx.def_kind(closure_def_id)
{
let generator_layout = tcx.mir_generator_witnesses(closure_def_id);
for interior_ty in &generator_layout.field_tys {
label_match(interior_ty.ty, interior_ty.source_info.span);
}
}
}
}
}
}
if !label {
err.span_label(span, "cannot resolve opaque type");
}
err.emit()
}
pub(super) fn check_generator_obligations(tcx: TyCtxt<'_>, def_id: LocalDefId) {
debug_assert!(tcx.sess.opts.unstable_opts.drop_tracking_mir);
debug_assert!(matches!(tcx.def_kind(def_id), DefKind::Generator));
let typeck = tcx.typeck(def_id);
let param_env = tcx.param_env(def_id);
let generator_interior_predicates = &typeck.generator_interior_predicates[&def_id];
debug!(?generator_interior_predicates);
let infcx = tcx
.infer_ctxt()
// typeck writeback gives us predicates with their regions erased.
// As borrowck already has checked lifetimes, we do not need to do it again.
.ignoring_regions()
// Bind opaque types to `def_id` as they should have been checked by borrowck.
.with_opaque_type_inference(DefiningAnchor::Bind(def_id))
.build();
let mut fulfillment_cx = <dyn TraitEngine<'_>>::new(infcx.tcx);
for (predicate, cause) in generator_interior_predicates {
let obligation = Obligation::new(tcx, cause.clone(), param_env, *predicate);
fulfillment_cx.register_predicate_obligation(&infcx, obligation);
}
let errors = fulfillment_cx.select_all_or_error(&infcx);
debug!(?errors);
if !errors.is_empty() {
infcx.err_ctxt().report_fulfillment_errors(&errors);
}
}
|