1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
macro_rules! tests {
($isqrt_consistency_check_fn_macro:ident : $($T:ident)+) => {
$(
mod $T {
$isqrt_consistency_check_fn_macro!($T);
// Check that the following produce the correct values from
// `isqrt`:
//
// * the first and last 128 nonnegative values
// * powers of two, minus one
// * powers of two
//
// For signed types, check that `checked_isqrt` and `isqrt`
// either produce the same numeric value or respectively
// produce `None` and a panic. Make sure to do a consistency
// check for `<$T>::MIN` as well, as no nonnegative values
// negate to it.
//
// For unsigned types check that `isqrt` produces the same
// numeric value for `$T` and `NonZero<$T>`.
#[test]
fn isqrt() {
isqrt_consistency_check(<$T>::MIN);
for n in (0..=127)
.chain(<$T>::MAX - 127..=<$T>::MAX)
.chain((0..<$T>::MAX.count_ones()).map(|exponent| (1 << exponent) - 1))
.chain((0..<$T>::MAX.count_ones()).map(|exponent| 1 << exponent))
{
isqrt_consistency_check(n);
let isqrt_n = n.isqrt();
assert!(
isqrt_n
.checked_mul(isqrt_n)
.map(|isqrt_n_squared| isqrt_n_squared <= n)
.unwrap_or(false),
"`{n}.isqrt()` should be lower than {isqrt_n}."
);
assert!(
(isqrt_n + 1)
.checked_mul(isqrt_n + 1)
.map(|isqrt_n_plus_1_squared| n < isqrt_n_plus_1_squared)
.unwrap_or(true),
"`{n}.isqrt()` should be higher than {isqrt_n})."
);
}
}
// Check the square roots of:
//
// * the first 1,024 perfect squares
// * halfway between each of the first 1,024 perfect squares
// and the next perfect square
// * the next perfect square after the each of the first 1,024
// perfect squares, minus one
// * the last 1,024 perfect squares
// * the last 1,024 perfect squares, minus one
// * halfway between each of the last 1,024 perfect squares
// and the previous perfect square
#[test]
// Skip this test on Miri, as it takes too long to run.
#[cfg(not(miri))]
fn isqrt_extended() {
// The correct value is worked out by using the fact that
// the nth nonzero perfect square is the sum of the first n
// odd numbers:
//
// 1 = 1
// 4 = 1 + 3
// 9 = 1 + 3 + 5
// 16 = 1 + 3 + 5 + 7
//
// Note also that the last odd number added in is two times
// the square root of the previous perfect square, plus
// one:
//
// 1 = 2*0 + 1
// 3 = 2*1 + 1
// 5 = 2*2 + 1
// 7 = 2*3 + 1
//
// That means we can add the square root of this perfect
// square once to get about halfway to the next perfect
// square, then we can add the square root of this perfect
// square again to get to the next perfect square, minus
// one, then we can add one to get to the next perfect
// square.
//
// This allows us to, for each of the first 1,024 perfect
// squares, test that the square roots of the following are
// all correct and equal to each other:
//
// * the current perfect square
// * about halfway to the next perfect square
// * the next perfect square, minus one
let mut n: $T = 0;
for sqrt_n in 0..1_024.min((1_u128 << (<$T>::MAX.count_ones()/2)) - 1) as $T {
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"`{sqrt_n}.pow(2).isqrt()` should be {sqrt_n}."
);
n += sqrt_n;
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"{n} is about halfway between `{sqrt_n}.pow(2)` and `{}.pow(2)`, so `{n}.isqrt()` should be {sqrt_n}.",
sqrt_n + 1
);
n += sqrt_n;
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"`({}.pow(2) - 1).isqrt()` should be {sqrt_n}.",
sqrt_n + 1
);
n += 1;
}
// Similarly, for each of the last 1,024 perfect squares,
// check:
//
// * the current perfect square
// * the current perfect square, minus one
// * about halfway to the previous perfect square
//
// `MAX`'s `isqrt` return value is verified in the `isqrt`
// test function above.
let maximum_sqrt = <$T>::MAX.isqrt();
let mut n = maximum_sqrt * maximum_sqrt;
for sqrt_n in (maximum_sqrt - 1_024.min((1_u128 << (<$T>::MAX.count_ones()/2)) - 1) as $T..maximum_sqrt).rev() {
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n + 1,
"`{0}.pow(2).isqrt()` should be {0}.",
sqrt_n + 1
);
n -= 1;
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"`({}.pow(2) - 1).isqrt()` should be {sqrt_n}.",
sqrt_n + 1
);
n -= sqrt_n;
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"{n} is about halfway between `{sqrt_n}.pow(2)` and `{}.pow(2)`, so `{n}.isqrt()` should be {sqrt_n}.",
sqrt_n + 1
);
n -= sqrt_n;
}
}
}
)*
};
}
macro_rules! signed_check {
($T:ident) => {
/// This takes an input and, if it's nonnegative or
#[doc = concat!("`", stringify!($T), "::MIN`,")]
/// checks that `isqrt` and `checked_isqrt` produce equivalent results
/// for that input and for the negative of that input.
///
/// # Note
///
/// This cannot check that negative inputs to `isqrt` cause panics if
/// panics abort instead of unwind.
fn isqrt_consistency_check(n: $T) {
// `<$T>::MIN` will be negative, so ignore it in this nonnegative
// section.
if n >= 0 {
assert_eq!(
Some(n.isqrt()),
n.checked_isqrt(),
"`{n}.checked_isqrt()` should match `Some({n}.isqrt())`.",
);
}
// `wrapping_neg` so that `<$T>::MIN` will negate to itself rather
// than panicking.
let negative_n = n.wrapping_neg();
// Zero negated will still be nonnegative, so ignore it in this
// negative section.
if negative_n < 0 {
assert_eq!(
negative_n.checked_isqrt(),
None,
"`({negative_n}).checked_isqrt()` should be `None`, as {negative_n} is negative.",
);
// `catch_unwind` only works when panics unwind rather than abort.
#[cfg(panic = "unwind")]
{
std::panic::catch_unwind(core::panic::AssertUnwindSafe(|| (-n).isqrt())).expect_err(
&format!("`({negative_n}).isqrt()` should have panicked, as {negative_n} is negative.")
);
}
}
}
};
}
macro_rules! unsigned_check {
($T:ident) => {
/// This takes an input and, if it's nonzero, checks that `isqrt`
/// produces the same numeric value for both
#[doc = concat!("`", stringify!($T), "` and ")]
#[doc = concat!("`NonZero<", stringify!($T), ">`.")]
fn isqrt_consistency_check(n: $T) {
// Zero cannot be turned into a `NonZero` value, so ignore it in
// this nonzero section.
if n > 0 {
assert_eq!(
n.isqrt(),
core::num::NonZero::<$T>::new(n)
.expect(
"Was not able to create a new `NonZero` value from a nonzero number."
)
.isqrt()
.get(),
"`{n}.isqrt` should match `NonZero`'s `{n}.isqrt().get()`.",
);
}
}
};
}
tests!(signed_check: i8 i16 i32 i64 i128);
tests!(unsigned_check: u8 u16 u32 u64 u128);
|