1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
#![feature(portable_simd)]
#![allow(clippy::excessive_precision)]
extern crate std_float;
/// Benchmarks game nbody code
/// Taken from the `packed_simd` crate
/// Run this benchmark with `cargo test --example nbody`
mod nbody {
use core_simd::simd::prelude::*;
#[allow(unused)] // False positive?
use std_float::StdFloat;
use std::f64::consts::PI;
const SOLAR_MASS: f64 = 4.0 * PI * PI;
const DAYS_PER_YEAR: f64 = 365.24;
#[derive(Debug, Clone, Copy)]
struct Body {
pub x: f64x4,
pub v: f64x4,
pub mass: f64,
}
const N_BODIES: usize = 5;
const BODIES: [Body; N_BODIES] = [
// sun:
Body {
x: f64x4::from_array([0., 0., 0., 0.]),
v: f64x4::from_array([0., 0., 0., 0.]),
mass: SOLAR_MASS,
},
// jupiter:
Body {
x: f64x4::from_array([
4.84143144246472090e+00,
-1.16032004402742839e+00,
-1.03622044471123109e-01,
0.,
]),
v: f64x4::from_array([
1.66007664274403694e-03 * DAYS_PER_YEAR,
7.69901118419740425e-03 * DAYS_PER_YEAR,
-6.90460016972063023e-05 * DAYS_PER_YEAR,
0.,
]),
mass: 9.54791938424326609e-04 * SOLAR_MASS,
},
// saturn:
Body {
x: f64x4::from_array([
8.34336671824457987e+00,
4.12479856412430479e+00,
-4.03523417114321381e-01,
0.,
]),
v: f64x4::from_array([
-2.76742510726862411e-03 * DAYS_PER_YEAR,
4.99852801234917238e-03 * DAYS_PER_YEAR,
2.30417297573763929e-05 * DAYS_PER_YEAR,
0.,
]),
mass: 2.85885980666130812e-04 * SOLAR_MASS,
},
// uranus:
Body {
x: f64x4::from_array([
1.28943695621391310e+01,
-1.51111514016986312e+01,
-2.23307578892655734e-01,
0.,
]),
v: f64x4::from_array([
2.96460137564761618e-03 * DAYS_PER_YEAR,
2.37847173959480950e-03 * DAYS_PER_YEAR,
-2.96589568540237556e-05 * DAYS_PER_YEAR,
0.,
]),
mass: 4.36624404335156298e-05 * SOLAR_MASS,
},
// neptune:
Body {
x: f64x4::from_array([
1.53796971148509165e+01,
-2.59193146099879641e+01,
1.79258772950371181e-01,
0.,
]),
v: f64x4::from_array([
2.68067772490389322e-03 * DAYS_PER_YEAR,
1.62824170038242295e-03 * DAYS_PER_YEAR,
-9.51592254519715870e-05 * DAYS_PER_YEAR,
0.,
]),
mass: 5.15138902046611451e-05 * SOLAR_MASS,
},
];
fn offset_momentum(bodies: &mut [Body; N_BODIES]) {
let (sun, rest) = bodies.split_at_mut(1);
let sun = &mut sun[0];
for body in rest {
let m_ratio = body.mass / SOLAR_MASS;
sun.v -= body.v * Simd::splat(m_ratio);
}
}
fn energy(bodies: &[Body; N_BODIES]) -> f64 {
let mut e = 0.;
for i in 0..N_BODIES {
let bi = &bodies[i];
e += bi.mass * (bi.v * bi.v).reduce_sum() * 0.5;
for bj in bodies.iter().take(N_BODIES).skip(i + 1) {
let dx = bi.x - bj.x;
e -= bi.mass * bj.mass / (dx * dx).reduce_sum().sqrt()
}
}
e
}
fn advance(bodies: &mut [Body; N_BODIES], dt: f64) {
const N: usize = N_BODIES * (N_BODIES - 1) / 2;
// compute distance between bodies:
let mut r = [f64x4::splat(0.); N];
{
let mut i = 0;
for j in 0..N_BODIES {
for k in j + 1..N_BODIES {
r[i] = bodies[j].x - bodies[k].x;
i += 1;
}
}
}
let mut mag = [0.0; N];
for i in (0..N).step_by(2) {
let d2s = f64x2::from_array([
(r[i] * r[i]).reduce_sum(),
(r[i + 1] * r[i + 1]).reduce_sum(),
]);
let dmags = f64x2::splat(dt) / (d2s * d2s.sqrt());
mag[i] = dmags[0];
mag[i + 1] = dmags[1];
}
let mut i = 0;
for j in 0..N_BODIES {
for k in j + 1..N_BODIES {
let f = r[i] * Simd::splat(mag[i]);
bodies[j].v -= f * Simd::splat(bodies[k].mass);
bodies[k].v += f * Simd::splat(bodies[j].mass);
i += 1
}
}
for body in bodies {
body.x += Simd::splat(dt) * body.v
}
}
pub fn run(n: usize) -> (f64, f64) {
let mut bodies = BODIES;
offset_momentum(&mut bodies);
let energy_before = energy(&bodies);
for _ in 0..n {
advance(&mut bodies, 0.01);
}
let energy_after = energy(&bodies);
(energy_before, energy_after)
}
}
#[cfg(test)]
mod tests {
// Good enough for demonstration purposes, not going for strictness here.
fn approx_eq_f64(a: f64, b: f64) -> bool {
(a - b).abs() < 0.00001
}
#[test]
fn test() {
const OUTPUT: [f64; 2] = [-0.169075164, -0.169087605];
let (energy_before, energy_after) = super::nbody::run(1000);
assert!(approx_eq_f64(energy_before, OUTPUT[0]));
assert!(approx_eq_f64(energy_after, OUTPUT[1]));
}
}
fn main() {
{
let (energy_before, energy_after) = nbody::run(1000);
println!("Energy before: {energy_before}");
println!("Energy after: {energy_after}");
}
}
|