1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
//===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the following soft-fp_t comparison routines:
//
// __eqsf2 __gesf2 __unordsf2
// __lesf2 __gtsf2
// __ltsf2
// __nesf2
//
// The semantics of the routines grouped in each column are identical, so there
// is a single implementation for each, and wrappers to provide the other names.
//
// The main routines behave as follows:
//
// __lesf2(a,b) returns -1 if a < b
// 0 if a == b
// 1 if a > b
// 1 if either a or b is NaN
//
// __gesf2(a,b) returns -1 if a < b
// 0 if a == b
// 1 if a > b
// -1 if either a or b is NaN
//
// __unordsf2(a,b) returns 0 if both a and b are numbers
// 1 if either a or b is NaN
//
// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
// NaN values.
//
//===----------------------------------------------------------------------===//
#define SINGLE_PRECISION
#include "fp_lib.h"
enum LE_RESULT {
LE_LESS = -1,
LE_EQUAL = 0,
LE_GREATER = 1,
LE_UNORDERED = 1
};
COMPILER_RT_ABI enum LE_RESULT
__lesf2(fp_t a, fp_t b) {
const srep_t aInt = toRep(a);
const srep_t bInt = toRep(b);
const rep_t aAbs = aInt & absMask;
const rep_t bAbs = bInt & absMask;
// If either a or b is NaN, they are unordered.
if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
// If a and b are both zeros, they are equal.
if ((aAbs | bAbs) == 0) return LE_EQUAL;
// If at least one of a and b is positive, we get the same result comparing
// a and b as signed integers as we would with a fp_ting-point compare.
if ((aInt & bInt) >= 0) {
if (aInt < bInt) return LE_LESS;
else if (aInt == bInt) return LE_EQUAL;
else return LE_GREATER;
}
// Otherwise, both are negative, so we need to flip the sense of the
// comparison to get the correct result. (This assumes a twos- or ones-
// complement integer representation; if integers are represented in a
// sign-magnitude representation, then this flip is incorrect).
else {
if (aInt > bInt) return LE_LESS;
else if (aInt == bInt) return LE_EQUAL;
else return LE_GREATER;
}
}
#if defined(__ELF__)
// Alias for libgcc compatibility
FNALIAS(__cmpsf2, __lesf2);
#endif
enum GE_RESULT {
GE_LESS = -1,
GE_EQUAL = 0,
GE_GREATER = 1,
GE_UNORDERED = -1 // Note: different from LE_UNORDERED
};
COMPILER_RT_ABI enum GE_RESULT
__gesf2(fp_t a, fp_t b) {
const srep_t aInt = toRep(a);
const srep_t bInt = toRep(b);
const rep_t aAbs = aInt & absMask;
const rep_t bAbs = bInt & absMask;
if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
if ((aAbs | bAbs) == 0) return GE_EQUAL;
if ((aInt & bInt) >= 0) {
if (aInt < bInt) return GE_LESS;
else if (aInt == bInt) return GE_EQUAL;
else return GE_GREATER;
} else {
if (aInt > bInt) return GE_LESS;
else if (aInt == bInt) return GE_EQUAL;
else return GE_GREATER;
}
}
COMPILER_RT_ABI int
__unordsf2(fp_t a, fp_t b) {
const rep_t aAbs = toRep(a) & absMask;
const rep_t bAbs = toRep(b) & absMask;
return aAbs > infRep || bAbs > infRep;
}
// The following are alternative names for the preceding routines.
COMPILER_RT_ABI enum LE_RESULT
__eqsf2(fp_t a, fp_t b) {
return __lesf2(a, b);
}
COMPILER_RT_ABI enum LE_RESULT
__ltsf2(fp_t a, fp_t b) {
return __lesf2(a, b);
}
COMPILER_RT_ABI enum LE_RESULT
__nesf2(fp_t a, fp_t b) {
return __lesf2(a, b);
}
COMPILER_RT_ABI enum GE_RESULT
__gtsf2(fp_t a, fp_t b) {
return __gesf2(a, b);
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
AEABI_RTABI int __aeabi_fcmpun(fp_t a, fp_t b) {
return __unordsf2(a, b);
}
#else
AEABI_RTABI int __aeabi_fcmpun(fp_t a, fp_t b) COMPILER_RT_ALIAS(__unordsf2);
#endif
#endif
|