1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
//@ compile-flags: -Zmir-opt-level=0
//@ run-pass
// This tests the float classification functions, for regular runtime code and for const evaluation.
#![feature(f16)]
#![feature(f128)]
#![allow(unused_macro_rules)]
use std::hint::black_box;
macro_rules! both_assert {
($a:expr) => {
{
const _: () = assert!($a);
// `black_box` prevents promotion, and MIR opts are disabled above, so this is truly
// going through LLVM.
assert!(black_box($a));
}
};
($a:expr, $b:expr) => {
{
const _: () = assert!($a == $b);
assert_eq!(black_box($a), black_box($b));
}
};
}
fn has_broken_floats() -> bool {
// i586 targets are broken due to <https://github.com/rust-lang/rust/issues/114479>.
cfg!(all(target_arch = "x86", not(target_feature = "sse2")))
}
#[cfg(target_arch = "x86_64")]
fn f16(){
both_assert!((1f16).to_bits(), 0x3c00);
both_assert!(u16::from_be_bytes(1f16.to_be_bytes()), 0x3c00);
both_assert!((12.5f16).to_bits(), 0x4a40);
both_assert!(u16::from_le_bytes(12.5f16.to_le_bytes()), 0x4a40);
both_assert!((1337f16).to_bits(), 0x6539);
both_assert!(u16::from_ne_bytes(1337f16.to_ne_bytes()), 0x6539);
both_assert!((-14.25f16).to_bits(), 0xcb20);
both_assert!(f16::from_bits(0x3c00), 1.0);
both_assert!(f16::from_be_bytes(0x3c00u16.to_be_bytes()), 1.0);
both_assert!(f16::from_bits(0x4a40), 12.5);
both_assert!(f16::from_le_bytes(0x4a40u16.to_le_bytes()), 12.5);
both_assert!(f16::from_bits(0x5be0), 252.0);
both_assert!(f16::from_ne_bytes(0x5be0u16.to_ne_bytes()), 252.0);
both_assert!(f16::from_bits(0xcb20), -14.25);
// Check that NaNs roundtrip their bits regardless of signalingness
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
// NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
const QUIET_NAN: u16 = f16::NAN.to_bits() ^ 0x0155;
const SIGNALING_NAN: u16 = f16::NAN.to_bits() ^ 0x02AA;
both_assert!(f16::from_bits(QUIET_NAN).is_nan());
both_assert!(f16::from_bits(SIGNALING_NAN).is_nan());
both_assert!(f16::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
if !has_broken_floats() {
both_assert!(f16::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
}
}
fn f32() {
both_assert!((1f32).to_bits(), 0x3f800000);
both_assert!(u32::from_be_bytes(1f32.to_be_bytes()), 0x3f800000);
both_assert!((12.5f32).to_bits(), 0x41480000);
both_assert!(u32::from_le_bytes(12.5f32.to_le_bytes()), 0x41480000);
both_assert!((1337f32).to_bits(), 0x44a72000);
both_assert!(u32::from_ne_bytes(1337f32.to_ne_bytes()), 0x44a72000);
both_assert!((-14.25f32).to_bits(), 0xc1640000);
both_assert!(f32::from_bits(0x3f800000), 1.0);
both_assert!(f32::from_be_bytes(0x3f800000u32.to_be_bytes()), 1.0);
both_assert!(f32::from_bits(0x41480000), 12.5);
both_assert!(f32::from_le_bytes(0x41480000u32.to_le_bytes()), 12.5);
both_assert!(f32::from_bits(0x44a72000), 1337.0);
both_assert!(f32::from_ne_bytes(0x44a72000u32.to_ne_bytes()), 1337.0);
both_assert!(f32::from_bits(0xc1640000), -14.25);
// Check that NaNs roundtrip their bits regardless of signalingness
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
// NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
const QUIET_NAN: u32 = f32::NAN.to_bits() ^ 0x002A_AAAA;
const SIGNALING_NAN: u32 = f32::NAN.to_bits() ^ 0x0055_5555;
both_assert!(f32::from_bits(QUIET_NAN).is_nan());
both_assert!(f32::from_bits(SIGNALING_NAN).is_nan());
both_assert!(f32::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
if !has_broken_floats() {
both_assert!(f32::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
}
}
fn f64() {
both_assert!((1f64).to_bits(), 0x3ff0000000000000);
both_assert!(u64::from_be_bytes(1f64.to_be_bytes()), 0x3ff0000000000000);
both_assert!((12.5f64).to_bits(), 0x4029000000000000);
both_assert!(u64::from_le_bytes(12.5f64.to_le_bytes()), 0x4029000000000000);
both_assert!((1337f64).to_bits(), 0x4094e40000000000);
both_assert!(u64::from_ne_bytes(1337f64.to_ne_bytes()), 0x4094e40000000000);
both_assert!((-14.25f64).to_bits(), 0xc02c800000000000);
both_assert!(f64::from_bits(0x3ff0000000000000), 1.0);
both_assert!(f64::from_be_bytes(0x3ff0000000000000u64.to_be_bytes()), 1.0);
both_assert!(f64::from_bits(0x4029000000000000), 12.5);
both_assert!(f64::from_le_bytes(0x4029000000000000u64.to_le_bytes()), 12.5);
both_assert!(f64::from_bits(0x4094e40000000000), 1337.0);
both_assert!(f64::from_ne_bytes(0x4094e40000000000u64.to_ne_bytes()), 1337.0);
both_assert!(f64::from_bits(0xc02c800000000000), -14.25);
// Check that NaNs roundtrip their bits regardless of signalingness
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
// NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
const QUIET_NAN: u64 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555;
const SIGNALING_NAN: u64 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA;
both_assert!(f64::from_bits(QUIET_NAN).is_nan());
both_assert!(f64::from_bits(SIGNALING_NAN).is_nan());
both_assert!(f64::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
if !has_broken_floats() {
both_assert!(f64::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
}
}
#[cfg(target_arch = "x86_64")]
fn f128() {
both_assert!((1f128).to_bits(), 0x3fff0000000000000000000000000000);
both_assert!(u128::from_be_bytes(1f128.to_be_bytes()), 0x3fff0000000000000000000000000000);
both_assert!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
both_assert!(u128::from_le_bytes(12.5f128.to_le_bytes()), 0x40029000000000000000000000000000);
both_assert!((1337f128).to_bits(), 0x40094e40000000000000000000000000);
both_assert!(u128::from_ne_bytes(1337f128.to_ne_bytes()), 0x40094e40000000000000000000000000);
both_assert!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000);
both_assert!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0);
both_assert!(f128::from_be_bytes(0x3fff0000000000000000000000000000u128.to_be_bytes()), 1.0);
both_assert!(f128::from_bits(0x40029000000000000000000000000000), 12.5);
both_assert!(f128::from_le_bytes(0x40029000000000000000000000000000u128.to_le_bytes()), 12.5);
both_assert!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0);
assert_eq!(f128::from_ne_bytes(0x40094e40000000000000000000000000u128.to_ne_bytes()), 1337.0);
both_assert!(f128::from_bits(0xc002c800000000000000000000000000), -14.25);
// Check that NaNs roundtrip their bits regardless of signalingness
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
// NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
const QUIET_NAN: u128 = f128::NAN.to_bits() | 0x0000_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA;
const SIGNALING_NAN: u128 = f128::NAN.to_bits() ^ 0x0000_5555_5555_5555_5555_5555_5555_5555;
both_assert!(f128::from_bits(QUIET_NAN).is_nan());
both_assert!(f128::from_bits(SIGNALING_NAN).is_nan());
both_assert!(f128::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
if !has_broken_floats() {
both_assert!(f128::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
}
}
fn main() {
f32();
f64();
#[cfg(target_arch = "x86_64")]
{
f16();
f128();
}
}
|