1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
use rand::{Rng, SeedableRng};
use base64::engine::{general_purpose::STANDARD, Engine};
use base64::*;
use base64::engine::general_purpose::{GeneralPurpose, NO_PAD};
// generate random contents of the specified length and test encode/decode roundtrip
fn roundtrip_random<E: Engine>(
byte_buf: &mut Vec<u8>,
str_buf: &mut String,
engine: &E,
byte_len: usize,
approx_values_per_byte: u8,
max_rounds: u64,
) {
// let the short ones be short but don't let it get too crazy large
let num_rounds = calculate_number_of_rounds(byte_len, approx_values_per_byte, max_rounds);
let mut r = rand::rngs::SmallRng::from_entropy();
let mut decode_buf = Vec::new();
for _ in 0..num_rounds {
byte_buf.clear();
str_buf.clear();
decode_buf.clear();
while byte_buf.len() < byte_len {
byte_buf.push(r.gen::<u8>());
}
engine.encode_string(&byte_buf, str_buf);
engine.decode_vec(&str_buf, &mut decode_buf).unwrap();
assert_eq!(byte_buf, &decode_buf);
}
}
fn calculate_number_of_rounds(byte_len: usize, approx_values_per_byte: u8, max: u64) -> u64 {
// don't overflow
let mut prod = approx_values_per_byte as u64;
for _ in 0..byte_len {
if prod > max {
return max;
}
prod = prod.saturating_mul(prod);
}
prod
}
#[test]
fn roundtrip_random_short_standard() {
let mut byte_buf: Vec<u8> = Vec::new();
let mut str_buf = String::new();
for input_len in 0..40 {
roundtrip_random(&mut byte_buf, &mut str_buf, &STANDARD, input_len, 4, 10000);
}
}
#[test]
fn roundtrip_random_with_fast_loop_standard() {
let mut byte_buf: Vec<u8> = Vec::new();
let mut str_buf = String::new();
for input_len in 40..100 {
roundtrip_random(&mut byte_buf, &mut str_buf, &STANDARD, input_len, 4, 1000);
}
}
#[test]
fn roundtrip_random_short_no_padding() {
let mut byte_buf: Vec<u8> = Vec::new();
let mut str_buf = String::new();
let engine = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD);
for input_len in 0..40 {
roundtrip_random(&mut byte_buf, &mut str_buf, &engine, input_len, 4, 10000);
}
}
#[test]
fn roundtrip_random_no_padding() {
let mut byte_buf: Vec<u8> = Vec::new();
let mut str_buf = String::new();
let engine = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD);
for input_len in 40..100 {
roundtrip_random(&mut byte_buf, &mut str_buf, &engine, input_len, 4, 1000);
}
}
#[test]
fn roundtrip_decode_trailing_10_bytes() {
// This is a special case because we decode 8 byte blocks of input at a time as much as we can,
// ideally unrolled to 32 bytes at a time, in stages 1 and 2. Since we also write a u64's worth
// of bytes (8) to the output, we always write 2 garbage bytes that then will be overwritten by
// the NEXT block. However, if the next block only contains 2 bytes, it will decode to 1 byte,
// and therefore be too short to cover up the trailing 2 garbage bytes. Thus, we have stage 3
// to handle that case.
for num_quads in 0..25 {
let mut s: String = "ABCD".repeat(num_quads);
s.push_str("EFGHIJKLZg");
let engine = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD);
let decoded = engine.decode(&s).unwrap();
assert_eq!(num_quads * 3 + 7, decoded.len());
assert_eq!(s, engine.encode(&decoded));
}
}
#[test]
fn display_wrapper_matches_normal_encode() {
let mut bytes = Vec::<u8>::with_capacity(256);
for i in 0..255 {
bytes.push(i);
}
bytes.push(255);
assert_eq!(
STANDARD.encode(&bytes),
format!("{}", display::Base64Display::new(&bytes, &STANDARD))
);
}
#[test]
fn encode_engine_slice_error_when_buffer_too_small() {
for num_triples in 1..100 {
let input = "AAA".repeat(num_triples);
let mut vec = vec![0; (num_triples - 1) * 4];
assert_eq!(
EncodeSliceError::OutputSliceTooSmall,
STANDARD.encode_slice(&input, &mut vec).unwrap_err()
);
vec.push(0);
assert_eq!(
EncodeSliceError::OutputSliceTooSmall,
STANDARD.encode_slice(&input, &mut vec).unwrap_err()
);
vec.push(0);
assert_eq!(
EncodeSliceError::OutputSliceTooSmall,
STANDARD.encode_slice(&input, &mut vec).unwrap_err()
);
vec.push(0);
assert_eq!(
EncodeSliceError::OutputSliceTooSmall,
STANDARD.encode_slice(&input, &mut vec).unwrap_err()
);
vec.push(0);
assert_eq!(
num_triples * 4,
STANDARD.encode_slice(&input, &mut vec).unwrap()
);
}
}
|