1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
use std::alloc::{GlobalAlloc, Layout, System};
use std::ptr::null_mut;
use std::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
use bytes::{Buf, Bytes};
#[global_allocator]
static LEDGER: Ledger = Ledger::new();
const LEDGER_LENGTH: usize = 2048;
struct Ledger {
alloc_table: [(AtomicPtr<u8>, AtomicUsize); LEDGER_LENGTH],
}
impl Ledger {
const fn new() -> Self {
const ELEM: (AtomicPtr<u8>, AtomicUsize) =
(AtomicPtr::new(null_mut()), AtomicUsize::new(0));
let alloc_table = [ELEM; LEDGER_LENGTH];
Self { alloc_table }
}
/// Iterate over our table until we find an open entry, then insert into said entry
fn insert(&self, ptr: *mut u8, size: usize) {
for (entry_ptr, entry_size) in self.alloc_table.iter() {
// SeqCst is good enough here, we don't care about perf, i just want to be correct!
if entry_ptr
.compare_exchange(null_mut(), ptr, Ordering::SeqCst, Ordering::SeqCst)
.is_ok()
{
entry_size.store(size, Ordering::SeqCst);
break;
}
}
}
fn remove(&self, ptr: *mut u8) -> usize {
for (entry_ptr, entry_size) in self.alloc_table.iter() {
// set the value to be something that will never try and be deallocated, so that we
// don't have any chance of a race condition
//
// dont worry, LEDGER_LENGTH is really long to compensate for us not reclaiming space
if entry_ptr
.compare_exchange(
ptr,
invalid_ptr(usize::MAX),
Ordering::SeqCst,
Ordering::SeqCst,
)
.is_ok()
{
return entry_size.load(Ordering::SeqCst);
}
}
panic!("Couldn't find a matching entry for {:x?}", ptr);
}
}
unsafe impl GlobalAlloc for Ledger {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
let size = layout.size();
let ptr = System.alloc(layout);
self.insert(ptr, size);
ptr
}
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
let orig_size = self.remove(ptr);
if orig_size != layout.size() {
panic!(
"bad dealloc: alloc size was {}, dealloc size is {}",
orig_size,
layout.size()
);
} else {
System.dealloc(ptr, layout);
}
}
}
#[test]
fn test_bytes_advance() {
let mut bytes = Bytes::from(vec![10, 20, 30]);
bytes.advance(1);
drop(bytes);
}
#[test]
fn test_bytes_truncate() {
let mut bytes = Bytes::from(vec![10, 20, 30]);
bytes.truncate(2);
drop(bytes);
}
#[test]
fn test_bytes_truncate_and_advance() {
let mut bytes = Bytes::from(vec![10, 20, 30]);
bytes.truncate(2);
bytes.advance(1);
drop(bytes);
}
/// Returns a dangling pointer with the given address. This is used to store
/// integer data in pointer fields.
#[inline]
fn invalid_ptr<T>(addr: usize) -> *mut T {
let ptr = std::ptr::null_mut::<u8>().wrapping_add(addr);
debug_assert_eq!(ptr as usize, addr);
ptr.cast::<T>()
}
#[test]
fn test_bytes_into_vec() {
let vec = vec![33u8; 1024];
// Test cases where kind == KIND_VEC
let b1 = Bytes::from(vec.clone());
assert_eq!(Vec::from(b1), vec);
// Test cases where kind == KIND_ARC, ref_cnt == 1
let b1 = Bytes::from(vec.clone());
drop(b1.clone());
assert_eq!(Vec::from(b1), vec);
// Test cases where kind == KIND_ARC, ref_cnt == 2
let b1 = Bytes::from(vec.clone());
let b2 = b1.clone();
assert_eq!(Vec::from(b1), vec);
// Test cases where vtable = SHARED_VTABLE, kind == KIND_ARC, ref_cnt == 1
assert_eq!(Vec::from(b2), vec);
// Test cases where offset != 0
let mut b1 = Bytes::from(vec.clone());
let b2 = b1.split_off(20);
assert_eq!(Vec::from(b2), vec[20..]);
assert_eq!(Vec::from(b1), vec[..20]);
}
|