1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
//@ revisions: all strong basic none missing
//@ assembly-output: emit-asm
//@ only-windows
//@ only-msvc
//@ ignore-64bit 64-bit table based SEH has slightly different behaviors than classic SEH
//@ [all] compile-flags: -Z stack-protector=all
//@ [strong] compile-flags: -Z stack-protector=strong
//@ [basic] compile-flags: -Z stack-protector=basic
//@ [none] compile-flags: -Z stack-protector=none
//@ compile-flags: -C opt-level=2 -Z merge-functions=disabled
#![crate_type = "lib"]
#![allow(incomplete_features)]
#![feature(unsized_locals, unsized_fn_params)]
// CHECK-LABEL: emptyfn:
#[no_mangle]
pub fn emptyfn() {
// all: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
// CHECK-LABEL: array_char
#[no_mangle]
pub fn array_char(f: fn(*const char)) {
let a = ['c'; 1];
let b = ['d'; 3];
let c = ['e'; 15];
f(&a as *const _);
f(&b as *const _);
f(&c as *const _);
// all: __security_check_cookie
// strong: __security_check_cookie
// basic: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
// CHECK-LABEL: array_u8_1
#[no_mangle]
pub fn array_u8_1(f: fn(*const u8)) {
let a = [0u8; 1];
f(&a as *const _);
// The 'strong' heuristic adds stack protection to functions with local
// array variables regardless of their size.
// all: __security_check_cookie
// strong: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
// CHECK-LABEL: array_u8_small:
#[no_mangle]
pub fn array_u8_small(f: fn(*const u8)) {
let a = [0u8; 2];
let b = [0u8; 7];
f(&a as *const _);
f(&b as *const _);
// Small arrays do not lead to stack protection by the 'basic' heuristic.
// all: __security_check_cookie
// strong: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
// CHECK-LABEL: array_u8_large:
#[no_mangle]
pub fn array_u8_large(f: fn(*const u8)) {
let a = [0u8; 9];
f(&a as *const _);
// Since `a` is a byte array with size greater than 8, the basic heuristic
// will also protect this function.
// all: __security_check_cookie
// strong: __security_check_cookie
// basic: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
#[derive(Copy, Clone)]
pub struct ByteSizedNewtype(u8);
// CHECK-LABEL: array_bytesizednewtype_9:
#[no_mangle]
pub fn array_bytesizednewtype_9(f: fn(*const ByteSizedNewtype)) {
let a = [ByteSizedNewtype(0); 9];
f(&a as *const _);
// Since `a` is a byte array in the LLVM output, the basic heuristic will
// also protect this function.
// all: __security_check_cookie
// strong: __security_check_cookie
// basic: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
// CHECK-LABEL: local_var_addr_used_indirectly
#[no_mangle]
pub fn local_var_addr_used_indirectly(f: fn(bool)) {
let a = 5;
let a_addr = &a as *const _ as usize;
f(a_addr & 0x10 == 0);
// This function takes the address of a local variable taken. Although this
// address is never used as a way to refer to stack memory, the `strong`
// heuristic adds stack smash protection. This is also the case in C++:
// ```
// cat << EOF | clang++ -O2 -fstack-protector-strong -S -x c++ - -o - | grep stack_chk
// #include <cstdint>
// void f(void (*g)(bool)) {
// int32_t x;
// g((reinterpret_cast<uintptr_t>(&x) & 0x10U) == 0);
// }
// EOF
// ```
// all: __security_check_cookie
// strong: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
// CHECK-LABEL: local_string_addr_taken
#[no_mangle]
pub fn local_string_addr_taken(f: fn(&String)) {
let x = String::new();
f(&x);
// Taking the address of the local variable `x` leads to stack smash
// protection with the `strong` heuristic, but not with the `basic`
// heuristic. It does not matter that the reference is not mut.
//
// An interesting note is that a similar function in C++ *would* be
// protected by the `basic` heuristic, because `std::string` has a char
// array internally as a small object optimization:
// ```
// cat <<EOF | clang++ -O2 -fstack-protector -S -x c++ - -o - | grep stack_chk
// #include <string>
// void f(void (*g)(const std::string&)) {
// std::string x;
// g(x);
// }
// EOF
// ```
//
// all: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
pub trait SelfByRef {
fn f(&self) -> i32;
}
impl SelfByRef for i32 {
fn f(&self) -> i32 {
return self + 1;
}
}
// CHECK-LABEL: local_var_addr_taken_used_locally_only
#[no_mangle]
pub fn local_var_addr_taken_used_locally_only(factory: fn() -> i32, sink: fn(i32)) {
let x = factory();
let g = x.f();
sink(g);
// Even though the local variable conceptually has its address taken, as
// it's passed by reference to the trait function, the use of the reference
// is easily inlined. There is therefore no stack smash protection even with
// the `strong` heuristic.
// all: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
pub struct Gigastruct {
does: u64,
not: u64,
have: u64,
array: u64,
members: u64,
}
// CHECK-LABEL: local_large_var_moved
#[no_mangle]
pub fn local_large_var_moved(f: fn(Gigastruct)) {
let x = Gigastruct { does: 0, not: 1, have: 2, array: 3, members: 4 };
f(x);
// Even though the local variable conceptually doesn't have its address
// taken, it's so large that the "move" is implemented with a reference to a
// stack-local variable in the ABI. Consequently, this function *is*
// protected. This is also the case for rvalue-references in C++,
// regardless of struct size:
// ```
// cat <<EOF | clang++ -O2 -fstack-protector-strong -S -x c++ - -o - | grep stack_chk
// #include <cstdint>
// #include <utility>
// void f(void (*g)(uint64_t&&)) {
// uint64_t x;
// g(std::move(x));
// }
// EOF
// ```
// all: __security_check_cookie
// strong: __security_check_cookie
// basic: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
// CHECK-LABEL: local_large_var_cloned
#[no_mangle]
pub fn local_large_var_cloned(f: fn(Gigastruct)) {
f(Gigastruct { does: 0, not: 1, have: 2, array: 3, members: 4 });
// A new instance of `Gigastruct` is passed to `f()`, without any apparent
// connection to this stack frame. Still, since instances of `Gigastruct`
// are sufficiently large, it is allocated in the caller stack frame and
// passed as a pointer. As such, this function is *also* protected, just
// like `local_large_var_moved`. This is also the case for pass-by-value
// of sufficiently large structs in C++:
// ```
// cat <<EOF | clang++ -O2 -fstack-protector-strong -S -x c++ - -o - | grep stack_chk
// #include <cstdint>
// #include <utility>
// struct Gigastruct { uint64_t a, b, c, d, e; };
// void f(void (*g)(Gigastruct)) {
// g(Gigastruct{});
// }
// EOF
// ```
// all: __security_check_cookie
// strong: __security_check_cookie
// basic: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
extern "C" {
// A call to an external `alloca` function is *not* recognized as an
// `alloca(3)` operation. This function is a compiler built-in, as the
// man page explains. Clang translates it to an LLVM `alloca`
// instruction with a count argument, which is also what the LLVM stack
// protector heuristics looks for. The man page for `alloca(3)` details
// a way to avoid using the compiler built-in: pass a -std=c11
// argument, *and* don't include <alloca.h>. Though this leads to an
// external alloca() function being called, it doesn't lead to stack
// protection being included. It even fails with a linker error
// "undefined reference to `alloca'". Example:
// ```
// cat<<EOF | clang -fstack-protector-strong -x c -std=c11 - -o /dev/null
// #include <stdlib.h>
// void * alloca(size_t);
// void f(void (*g)(void*)) {
// void * p = alloca(10);
// g(p);
// }
// int main() { return 0; }
// EOF
// ```
// The following tests demonstrate that calls to an external `alloca`
// function in Rust also doesn't trigger stack protection.
fn alloca(size: usize) -> *mut ();
}
// CHECK-LABEL: alloca_small_compile_time_constant_arg
#[no_mangle]
pub fn alloca_small_compile_time_constant_arg(f: fn(*mut ())) {
f(unsafe { alloca(8) });
// all: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
// CHECK-LABEL: alloca_large_compile_time_constant_arg
#[no_mangle]
pub fn alloca_large_compile_time_constant_arg(f: fn(*mut ())) {
f(unsafe { alloca(9) });
// all: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
// CHECK-LABEL: alloca_dynamic_arg
#[no_mangle]
pub fn alloca_dynamic_arg(f: fn(*mut ()), n: usize) {
f(unsafe { alloca(n) });
// all: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
// The question then is: in what ways can Rust code generate array-`alloca`
// LLVM instructions? This appears to only be generated by
// rustc_codegen_ssa::traits::Builder::array_alloca() through
// rustc_codegen_ssa::mir::operand::OperandValue::store_unsized(). FWICT
// this is support for the "unsized locals" unstable feature:
// https://doc.rust-lang.org/unstable-book/language-features/unsized-locals.html.
// CHECK-LABEL: unsized_fn_param
#[no_mangle]
pub fn unsized_fn_param(s: [u8], l: bool, f: fn([u8])) {
let n = if l { 1 } else { 2 };
f(*Box::<[u8]>::from(&s[0..n])); // slice-copy with Box::from
// Even though slices are conceptually passed by-value both into this
// function and into `f()`, this is implemented with pass-by-reference
// using a suitably constructed fat-pointer (as if the functions
// accepted &[u8]). This function therefore doesn't need dynamic array
// alloca, and is therefore not protected by the `strong` or `basic`
// heuristics.
// We should have a __security_check_cookie call in `all` and `strong` modes but
// LLVM does not support generating stack protectors in functions with funclet
// based EH personalities.
// https://github.com/llvm/llvm-project/blob/37fd3c96b917096d8a550038f6e61cdf0fc4174f/llvm/lib/CodeGen/StackProtector.cpp#L103C1-L109C4
// all-NOT: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
// CHECK-LABEL: unsized_local
#[no_mangle]
pub fn unsized_local(s: &[u8], l: bool, f: fn(&mut [u8])) {
let n = if l { 1 } else { 2 };
let mut a: [u8] = *Box::<[u8]>::from(&s[0..n]); // slice-copy with Box::from
f(&mut a);
// This function allocates a slice as a local variable in its stack
// frame. Since the size is not a compile-time constant, an array
// alloca is required, and the function is protected by both the
// `strong` and `basic` heuristic.
// We should have a __security_check_cookie call in `all`, `strong` and `basic` modes but
// LLVM does not support generating stack protectors in functions with funclet
// based EH personalities.
// https://github.com/llvm/llvm-project/blob/37fd3c96b917096d8a550038f6e61cdf0fc4174f/llvm/lib/CodeGen/StackProtector.cpp#L103C1-L109C4
// all-NOT: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
|