1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
///
/// This example parses, sorts and groups the iris dataset
/// and does some simple manipulations.
///
/// Iterators and itertools functionality are used throughout.
use itertools::Itertools;
use std::collections::HashMap;
use std::iter::repeat;
use std::num::ParseFloatError;
use std::str::FromStr;
static DATA: &str = include_str!("iris.data");
#[derive(Clone, Debug)]
struct Iris {
name: String,
data: [f32; 4],
}
#[derive(Clone, Debug)]
enum ParseError {
Numeric(ParseFloatError),
Other(&'static str),
}
impl From<ParseFloatError> for ParseError {
fn from(err: ParseFloatError) -> Self {
Self::Numeric(err)
}
}
/// Parse an Iris from a comma-separated line
impl FromStr for Iris {
type Err = ParseError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let mut iris = Self {
name: "".into(),
data: [0.; 4],
};
let mut parts = s.split(',').map(str::trim);
// using Iterator::by_ref()
for (index, part) in parts.by_ref().take(4).enumerate() {
iris.data[index] = part.parse::<f32>()?;
}
if let Some(name) = parts.next() {
iris.name = name.into();
} else {
return Err(ParseError::Other("Missing name"));
}
Ok(iris)
}
}
fn main() {
// using Itertools::fold_results to create the result of parsing
let irises = DATA
.lines()
.map(str::parse)
.fold_ok(Vec::new(), |mut v, iris: Iris| {
v.push(iris);
v
});
let mut irises = match irises {
Err(e) => {
println!("Error parsing: {:?}", e);
std::process::exit(1);
}
Ok(data) => data,
};
// Sort them and group them
irises.sort_by(|a, b| Ord::cmp(&a.name, &b.name));
// using Iterator::cycle()
let mut plot_symbols = "+ox".chars().cycle();
let mut symbolmap = HashMap::new();
// using Itertools::group_by
for (species, species_group) in &irises.iter().group_by(|iris| &iris.name) {
// assign a plot symbol
symbolmap
.entry(species)
.or_insert_with(|| plot_symbols.next().unwrap());
println!("{} (symbol={})", species, symbolmap[species]);
for iris in species_group {
// using Itertools::format for lazy formatting
println!("{:>3.1}", iris.data.iter().format(", "));
}
}
// Look at all combinations of the four columns
//
// See https://en.wikipedia.org/wiki/Iris_flower_data_set
//
let n = 30; // plot size
let mut plot = vec![' '; n * n];
// using Itertools::tuple_combinations
for (a, b) in (0..4).tuple_combinations() {
println!("Column {} vs {}:", a, b);
// Clear plot
//
// using std::iter::repeat;
// using Itertools::set_from
plot.iter_mut().set_from(repeat(' '));
// using Itertools::minmax
let min_max = |data: &[Iris], col| {
data.iter()
.map(|iris| iris.data[col])
.minmax()
.into_option()
.expect("Can't find min/max of empty iterator")
};
let (min_x, max_x) = min_max(&irises, a);
let (min_y, max_y) = min_max(&irises, b);
// Plot the data points
let round_to_grid = |x, min, max| ((x - min) / (max - min) * ((n - 1) as f32)) as usize;
let flip = |ix| n - 1 - ix; // reverse axis direction
for iris in &irises {
let ix = round_to_grid(iris.data[a], min_x, max_x);
let iy = flip(round_to_grid(iris.data[b], min_y, max_y));
plot[n * iy + ix] = symbolmap[&iris.name];
}
// render plot
//
// using Itertools::join
for line in plot.chunks(n) {
println!("{}", line.iter().join(" "))
}
}
}
|