1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
static BIG_B: &str = "\
efac3c0a_0de55551_fee0bfe4_67fa017a_1a898fa1_6ca57cb1\
ca9e3248_cacc09a9_b99d6abc_38418d0f_82ae4238_d9a68832\
aadec7c1_ac5fed48_7a56a71b_67ac59d5_afb28022_20d9592d\
247c4efc_abbd9b75_586088ee_1dc00dc4_232a8e15_6e8191dd\
675b6ae0_c80f5164_752940bc_284b7cee_885c1e10_e495345b\
8fbe9cfd_e5233fe1_19459d0b_d64be53c_27de5a02_a829976b\
33096862_82dad291_bd38b6a9_be396646_ddaf8039_a2573c39\
1b14e8bc_2cb53e48_298c047e_d9879e9c_5a521076_f0e27df3\
990e1659_d3d8205b_6443ebc0_9918ebee_6764f668_9f2b2be3\
b59cbc76_d76d0dfc_d737c3ec_0ccf9c00_ad0554bf_17e776ad\
b4edf9cc_6ce540be_76229093_5c53893b";
static BIG_E: &str = "\
be0e6ea6_08746133_e0fbc1bf_82dba91e_e2b56231_a81888d2\
a833a1fc_f7ff002a_3c486a13_4f420bf3_a5435be9_1a5c8391\
774d6e6c_085d8357_b0c97d4d_2bb33f7c_34c68059_f78d2541\
eacc8832_426f1816_d3be001e_b69f9242_51c7708e_e10efe98\
449c9a4a_b55a0f23_9d797410_515da00d_3ea07970_4478a2ca\
c3d5043c_bd9be1b4_6dce479d_4302d344_84a939e6_0ab5ada7\
12ae34b2_30cc473c_9f8ee69d_2cac5970_29f5bf18_bc8203e4\
f3e895a2_13c94f1e_24c73d77_e517e801_53661fdd_a2ce9e47\
a73dd7f8_2f2adb1e_3f136bf7_8ae5f3b8_08730de1_a4eff678\
e77a06d0_19a522eb_cbefba2a_9caf7736_b157c5c6_2d192591\
17946850_2ddb1822_117b68a0_32f7db88";
// This modulus is the prime from the 2048-bit MODP DH group:
// https://tools.ietf.org/html/rfc3526#section-3
static BIG_M: &str = "\
FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\
29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\
EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\
E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\
EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\
C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\
83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\
670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\
E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\
DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\
15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF";
static BIG_R: &str = "\
a1468311_6e56edc9_7a98228b_5e924776_0dd7836e_caabac13\
eda5373b_4752aa65_a1454850_40dc770e_30aa8675_6be7d3a8\
9d3085e4_da5155cf_b451ef62_54d0da61_cf2b2c87_f495e096\
055309f7_77802bbb_37271ba8_1313f1b5_075c75d1_024b6c77\
fdb56f17_b05bce61_e527ebfd_2ee86860_e9907066_edd526e7\
93d289bf_6726b293_41b0de24_eff82424_8dfd374b_4ec59542\
35ced2b2_6b195c90_10042ffb_8f58ce21_bc10ec42_64fda779\
d352d234_3d4eaea6_a86111ad_a37e9555_43ca78ce_2885bed7\
5a30d182_f1cf6834_dc5b6e27_1a41ac34_a2e91e11_33363ff0\
f88a7b04_900227c9_f6e6d06b_7856b4bb_4e354d61_060db6c8\
109c4735_6e7db425_7b5d74c7_0b709508";
mod biguint {
use num_bigint::BigUint;
use num_integer::Integer;
use num_traits::Num;
fn check_modpow<T: Into<BigUint>>(b: T, e: T, m: T, r: T) {
let b: BigUint = b.into();
let e: BigUint = e.into();
let m: BigUint = m.into();
let r: BigUint = r.into();
assert_eq!(b.modpow(&e, &m), r);
let even_m = &m << 1;
let even_modpow = b.modpow(&e, &even_m);
assert!(even_modpow < even_m);
assert_eq!(even_modpow.mod_floor(&m), r);
}
#[test]
fn test_modpow_single() {
check_modpow::<u32>(1, 0, 11, 1);
check_modpow::<u32>(0, 15, 11, 0);
check_modpow::<u32>(3, 7, 11, 9);
check_modpow::<u32>(5, 117, 19, 1);
check_modpow::<u32>(20, 1, 2, 0);
check_modpow::<u32>(20, 1, 3, 2);
}
#[test]
fn test_modpow_small() {
for b in 0u64..11 {
for e in 0u64..11 {
for m in 1..11 {
check_modpow::<u64>(b, e, m, b.pow(e as u32) % m);
}
}
}
}
#[test]
fn test_modpow_big() {
let b = BigUint::from_str_radix(super::BIG_B, 16).unwrap();
let e = BigUint::from_str_radix(super::BIG_E, 16).unwrap();
let m = BigUint::from_str_radix(super::BIG_M, 16).unwrap();
let r = BigUint::from_str_radix(super::BIG_R, 16).unwrap();
assert_eq!(b.modpow(&e, &m), r);
let even_m = &m << 1;
let even_modpow = b.modpow(&e, &even_m);
assert!(even_modpow < even_m);
assert_eq!(even_modpow % m, r);
}
}
mod bigint {
use num_bigint::BigInt;
use num_integer::Integer;
use num_traits::{Num, One, Signed};
fn check_modpow<T: Into<BigInt>>(b: T, e: T, m: T, r: T) {
fn check(b: &BigInt, e: &BigInt, m: &BigInt, r: &BigInt) {
assert_eq!(&b.modpow(e, m), r, "{} ** {} (mod {}) != {}", b, e, m, r);
let even_m = m << 1u8;
let even_modpow = b.modpow(e, m);
assert!(even_modpow.abs() < even_m.abs());
assert_eq!(&even_modpow.mod_floor(m), r);
// the sign of the result follows the modulus like `mod_floor`, not `rem`
assert_eq!(b.modpow(&BigInt::one(), m), b.mod_floor(m));
}
let b: BigInt = b.into();
let e: BigInt = e.into();
let m: BigInt = m.into();
let r: BigInt = r.into();
let neg_b_r = if e.is_odd() {
(-&r).mod_floor(&m)
} else {
r.clone()
};
let neg_m_r = r.mod_floor(&-&m);
let neg_bm_r = neg_b_r.mod_floor(&-&m);
check(&b, &e, &m, &r);
check(&-&b, &e, &m, &neg_b_r);
check(&b, &e, &-&m, &neg_m_r);
check(&-b, &e, &-&m, &neg_bm_r);
}
#[test]
fn test_modpow() {
check_modpow(1, 0, 11, 1);
check_modpow(0, 15, 11, 0);
check_modpow(3, 7, 11, 9);
check_modpow(5, 117, 19, 1);
check_modpow(-20, 1, 2, 0);
check_modpow(-20, 1, 3, 1);
}
#[test]
fn test_modpow_small() {
for b in -10i64..11 {
for e in 0i64..11 {
for m in -10..11 {
if m == 0 {
continue;
}
check_modpow(b, e, m, b.pow(e as u32).mod_floor(&m));
}
}
}
}
#[test]
fn test_modpow_big() {
let b = BigInt::from_str_radix(super::BIG_B, 16).unwrap();
let e = BigInt::from_str_radix(super::BIG_E, 16).unwrap();
let m = BigInt::from_str_radix(super::BIG_M, 16).unwrap();
let r = BigInt::from_str_radix(super::BIG_R, 16).unwrap();
check_modpow(b, e, m, r);
}
}
|