1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
//! Benchmark comparing the current GCD implemtation against an older one.
#![feature(test)]
extern crate test;
use num_integer::Integer;
use num_traits::{AsPrimitive, Bounded, Signed};
use test::{black_box, Bencher};
trait GcdOld: Integer {
fn gcd_old(&self, other: &Self) -> Self;
}
macro_rules! impl_gcd_old_for_isize {
($T:ty) => {
impl GcdOld for $T {
/// Calculates the Greatest Common Divisor (GCD) of the number and
/// `other`. The result is always positive.
#[inline]
fn gcd_old(&self, other: &Self) -> Self {
// Use Stein's algorithm
let mut m = *self;
let mut n = *other;
if m == 0 || n == 0 {
return (m | n).abs();
}
// find common factors of 2
let shift = (m | n).trailing_zeros();
// The algorithm needs positive numbers, but the minimum value
// can't be represented as a positive one.
// It's also a power of two, so the gcd can be
// calculated by bitshifting in that case
// Assuming two's complement, the number created by the shift
// is positive for all numbers except gcd = abs(min value)
// The call to .abs() causes a panic in debug mode
if m == Self::min_value() || n == Self::min_value() {
return (1 << shift).abs();
}
// guaranteed to be positive now, rest like unsigned algorithm
m = m.abs();
n = n.abs();
// divide n and m by 2 until odd
// m inside loop
n >>= n.trailing_zeros();
while m != 0 {
m >>= m.trailing_zeros();
if n > m {
std::mem::swap(&mut n, &mut m)
}
m -= n;
}
n << shift
}
}
};
}
impl_gcd_old_for_isize!(i8);
impl_gcd_old_for_isize!(i16);
impl_gcd_old_for_isize!(i32);
impl_gcd_old_for_isize!(i64);
impl_gcd_old_for_isize!(isize);
impl_gcd_old_for_isize!(i128);
macro_rules! impl_gcd_old_for_usize {
($T:ty) => {
impl GcdOld for $T {
/// Calculates the Greatest Common Divisor (GCD) of the number and
/// `other`. The result is always positive.
#[inline]
fn gcd_old(&self, other: &Self) -> Self {
// Use Stein's algorithm
let mut m = *self;
let mut n = *other;
if m == 0 || n == 0 {
return m | n;
}
// find common factors of 2
let shift = (m | n).trailing_zeros();
// divide n and m by 2 until odd
// m inside loop
n >>= n.trailing_zeros();
while m != 0 {
m >>= m.trailing_zeros();
if n > m {
std::mem::swap(&mut n, &mut m)
}
m -= n;
}
n << shift
}
}
};
}
impl_gcd_old_for_usize!(u8);
impl_gcd_old_for_usize!(u16);
impl_gcd_old_for_usize!(u32);
impl_gcd_old_for_usize!(u64);
impl_gcd_old_for_usize!(usize);
impl_gcd_old_for_usize!(u128);
/// Return an iterator that yields all Fibonacci numbers fitting into a u128.
fn fibonacci() -> impl Iterator<Item = u128> {
(0..185).scan((0, 1), |&mut (ref mut a, ref mut b), _| {
let tmp = *a;
*a = *b;
*b += tmp;
Some(*b)
})
}
fn run_bench<T: Integer + Bounded + Copy + 'static>(b: &mut Bencher, gcd: fn(&T, &T) -> T)
where
T: AsPrimitive<u128>,
u128: AsPrimitive<T>,
{
let max_value: u128 = T::max_value().as_();
let pairs: Vec<(T, T)> = fibonacci()
.collect::<Vec<_>>()
.windows(2)
.filter(|&pair| pair[0] <= max_value && pair[1] <= max_value)
.map(|pair| (pair[0].as_(), pair[1].as_()))
.collect();
b.iter(|| {
for &(ref m, ref n) in &pairs {
black_box(gcd(m, n));
}
});
}
macro_rules! bench_gcd {
($T:ident) => {
mod $T {
use crate::{run_bench, GcdOld};
use num_integer::Integer;
use test::Bencher;
#[bench]
fn bench_gcd(b: &mut Bencher) {
run_bench(b, $T::gcd);
}
#[bench]
fn bench_gcd_old(b: &mut Bencher) {
run_bench(b, $T::gcd_old);
}
}
};
}
bench_gcd!(u8);
bench_gcd!(u16);
bench_gcd!(u32);
bench_gcd!(u64);
bench_gcd!(u128);
bench_gcd!(i8);
bench_gcd!(i16);
bench_gcd!(i32);
bench_gcd!(i64);
bench_gcd!(i128);
|