1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
use std::collections::HashSet;
use std::hash::Hash;
use petgraph::algo::{greedy_matching, maximum_matching};
use petgraph::prelude::*;
macro_rules! assert_one_of {
($actual:expr, [$($expected:expr),+]) => {
let expected = &[$($expected),+];
if !expected.iter().any(|expected| expected == &$actual) {
let expected = expected.iter().map(|e| format!("\n{:?}", e)).collect::<Vec<_>>();
let comma_separated = expected.join(", ");
panic!("assertion failed: `actual does not equal to any of expected`\nactual:\n{:?}\nexpected:{}", $actual, comma_separated);
}
};
}
macro_rules! set {
() => {
HashSet::new()
};
($(($source:expr, $target:expr)),+) => {
{
let mut set = HashSet::new();
$(
set.insert(($source.into(), $target.into()));
)*
set
}
};
($($elem:expr),+) => {
{
let mut set = HashSet::new();
$(
set.insert($elem.into());
)*
set
}
};
}
// So we don't have to type `.collect::<HashSet<_>>`.
fn collect<'a, T: Copy + Eq + Hash + 'a>(iter: impl Iterator<Item = T>) -> HashSet<T> {
iter.collect()
}
#[test]
fn greedy_empty() {
let g: UnGraph<(), ()> = UnGraph::default();
let m = greedy_matching(&g);
assert_eq!(collect(m.edges()), set![]);
assert_eq!(collect(m.nodes()), set![]);
}
#[test]
fn greedy_disjoint() {
let g: UnGraph<(), ()> = UnGraph::from_edges(&[(0, 1), (2, 3)]);
let m = greedy_matching(&g);
assert_eq!(collect(m.edges()), set![(0, 1), (2, 3)]);
assert_eq!(collect(m.nodes()), set![0, 1, 2, 3]);
}
#[test]
fn greedy_odd_path() {
let g: UnGraph<(), ()> = UnGraph::from_edges(&[(0, 1), (1, 2), (2, 3)]);
let m = greedy_matching(&g);
assert_one_of!(collect(m.edges()), [set![(0, 1), (2, 3)], set![(1, 2)]]);
assert_one_of!(collect(m.nodes()), [set![0, 1, 2, 3], set![1, 2]]);
}
#[test]
fn greedy_star() {
let g: UnGraph<(), ()> = UnGraph::from_edges(&[(0, 1), (0, 2), (0, 3)]);
let m = greedy_matching(&g);
assert_one_of!(
collect(m.edges()),
[set![(0, 1)], set![(0, 2)], set![(0, 3)]]
);
assert_one_of!(collect(m.nodes()), [set![0, 1], set![0, 2], set![0, 3]]);
}
#[test]
fn maximum_empty() {
let g: UnGraph<(), ()> = UnGraph::default();
let m = maximum_matching(&g);
assert_eq!(collect(m.edges()), set![]);
assert_eq!(collect(m.nodes()), set![]);
}
#[test]
fn maximum_disjoint() {
let g: UnGraph<(), ()> = UnGraph::from_edges(&[(0, 1), (2, 3)]);
let m = maximum_matching(&g);
assert_eq!(collect(m.edges()), set![(0, 1), (2, 3)]);
assert_eq!(collect(m.nodes()), set![0, 1, 2, 3]);
}
#[test]
fn maximum_odd_path() {
let g: UnGraph<(), ()> = UnGraph::from_edges(&[(0, 1), (1, 2), (2, 3)]);
let m = maximum_matching(&g);
assert_eq!(collect(m.edges()), set![(0, 1), (2, 3)]);
assert_eq!(collect(m.nodes()), set![0, 1, 2, 3]);
}
#[cfg(feature = "stable_graph")]
#[test]
fn maximum_in_stable_graph() {
let mut g: StableUnGraph<(), ()> =
StableUnGraph::from_edges(&[(0, 1), (0, 2), (1, 2), (1, 3), (2, 4), (3, 4), (3, 5)]);
// Create a hole by removing node that would otherwise belong to the maximum
// matching.
g.remove_node(NodeIndex::new(4));
let m = maximum_matching(&g);
assert_one_of!(
collect(m.edges()),
[
set![(0, 1), (3, 5)],
set![(0, 2), (1, 3)],
set![(0, 2), (3, 5)]
]
);
assert_one_of!(
collect(m.nodes()),
[set![0, 1, 3, 5], set![0, 2, 1, 3], set![0, 2, 3, 5]]
);
}
#[cfg(feature = "stable_graph")]
#[test]
fn is_perfect_in_stable_graph() {
let mut g: StableUnGraph<(), ()> = StableUnGraph::from_edges(&[(0, 1), (1, 2), (2, 3)]);
g.remove_node(NodeIndex::new(0));
g.remove_node(NodeIndex::new(1));
let m = maximum_matching(&g);
assert_eq!(m.len(), 1);
assert!(m.is_perfect());
}
|