1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
use rustc_pattern_analysis::constructor::{
Constructor, ConstructorSet, IntRange, MaybeInfiniteInt, RangeEnd, VariantVisibility,
};
use rustc_pattern_analysis::usefulness::{PlaceValidity, UsefulnessReport};
use rustc_pattern_analysis::{Captures, MatchArm, PatCx, PrivateUninhabitedField};
/// Sets up `tracing` for easier debugging. Tries to look like the `rustc` setup.
pub fn init_tracing() {
use tracing_subscriber::Layer;
use tracing_subscriber::layer::SubscriberExt;
use tracing_subscriber::util::SubscriberInitExt;
let _ = tracing_tree::HierarchicalLayer::default()
.with_writer(std::io::stderr)
.with_ansi(true)
.with_targets(true)
.with_indent_amount(2)
.with_subscriber(
tracing_subscriber::Registry::default()
.with(tracing_subscriber::EnvFilter::from_default_env()),
)
.try_init();
}
/// A simple set of types.
#[allow(dead_code)]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum Ty {
/// Booleans
Bool,
/// 8-bit unsigned integers
U8,
/// Tuples.
Tuple(&'static [Ty]),
/// Enum with one variant of each given type.
Enum(&'static [Ty]),
/// A struct with `arity` fields of type `ty`.
BigStruct { arity: usize, ty: &'static Ty },
/// A enum with `arity` variants of type `ty`.
BigEnum { arity: usize, ty: &'static Ty },
}
/// The important logic.
impl Ty {
pub fn sub_tys(&self, ctor: &Constructor<Cx>) -> Vec<Self> {
use Constructor::*;
match (ctor, *self) {
(Struct, Ty::Tuple(tys)) => tys.iter().copied().collect(),
(Struct, Ty::BigStruct { arity, ty }) => (0..arity).map(|_| *ty).collect(),
(Variant(i), Ty::Enum(tys)) => vec![tys[*i]],
(Variant(_), Ty::BigEnum { ty, .. }) => vec![*ty],
(Bool(..) | IntRange(..) | NonExhaustive | Missing | Wildcard, _) => vec![],
_ => panic!("Unexpected ctor {ctor:?} for type {self:?}"),
}
}
fn is_empty(&self) -> bool {
match *self {
Ty::Bool | Ty::U8 => false,
Ty::Tuple(tys) => tys.iter().any(|ty| ty.is_empty()),
Ty::Enum(tys) => tys.iter().all(|ty| ty.is_empty()),
Ty::BigStruct { arity, ty } => arity != 0 && ty.is_empty(),
Ty::BigEnum { arity, ty } => arity == 0 || ty.is_empty(),
}
}
pub fn ctor_set(&self) -> ConstructorSet<Cx> {
match *self {
Ty::Bool => ConstructorSet::Bool,
Ty::U8 => ConstructorSet::Integers {
range_1: IntRange::from_range(
MaybeInfiniteInt::new_finite_uint(0),
MaybeInfiniteInt::new_finite_uint(255),
RangeEnd::Included,
),
range_2: None,
},
Ty::Tuple(..) | Ty::BigStruct { .. } => ConstructorSet::Struct { empty: false },
Ty::Enum(tys) if tys.is_empty() => ConstructorSet::NoConstructors,
Ty::Enum(tys) => ConstructorSet::Variants {
variants: tys
.iter()
.map(|ty| {
if ty.is_empty() {
VariantVisibility::Empty
} else {
VariantVisibility::Visible
}
})
.collect(),
non_exhaustive: false,
},
Ty::BigEnum { arity: 0, .. } => ConstructorSet::NoConstructors,
Ty::BigEnum { arity, ty } => {
let vis = if ty.is_empty() {
VariantVisibility::Empty
} else {
VariantVisibility::Visible
};
ConstructorSet::Variants {
variants: (0..arity).map(|_| vis).collect(),
non_exhaustive: false,
}
}
}
}
pub fn write_variant_name(
&self,
f: &mut std::fmt::Formatter<'_>,
ctor: &Constructor<Cx>,
) -> std::fmt::Result {
match (*self, ctor) {
(Ty::Tuple(..), _) => Ok(()),
(Ty::BigStruct { .. }, _) => write!(f, "BigStruct"),
(Ty::Enum(..), Constructor::Variant(i)) => write!(f, "Enum::Variant{i}"),
(Ty::BigEnum { .. }, Constructor::Variant(i)) => write!(f, "BigEnum::Variant{i}"),
_ => write!(f, "{:?}::{:?}", self, ctor),
}
}
}
/// Compute usefulness in our simple context (and set up tracing for easier debugging).
pub fn compute_match_usefulness<'p>(
arms: &[MatchArm<'p, Cx>],
ty: Ty,
scrut_validity: PlaceValidity,
complexity_limit: Option<usize>,
) -> Result<UsefulnessReport<'p, Cx>, ()> {
init_tracing();
rustc_pattern_analysis::usefulness::compute_match_usefulness(
&Cx,
arms,
ty,
scrut_validity,
complexity_limit,
)
}
#[derive(Debug)]
pub struct Cx;
/// The context for pattern analysis. Forwards anything interesting to `Ty` methods.
impl PatCx for Cx {
type Ty = Ty;
type Error = ();
type VariantIdx = usize;
type StrLit = ();
type ArmData = ();
type PatData = ();
fn is_exhaustive_patterns_feature_on(&self) -> bool {
false
}
fn ctor_arity(&self, ctor: &Constructor<Self>, ty: &Self::Ty) -> usize {
ty.sub_tys(ctor).len()
}
fn ctor_sub_tys<'a>(
&'a self,
ctor: &'a Constructor<Self>,
ty: &'a Self::Ty,
) -> impl Iterator<Item = (Self::Ty, PrivateUninhabitedField)> + ExactSizeIterator + Captures<'a>
{
ty.sub_tys(ctor).into_iter().map(|ty| (ty, PrivateUninhabitedField(false)))
}
fn ctors_for_ty(&self, ty: &Self::Ty) -> Result<ConstructorSet<Self>, Self::Error> {
Ok(ty.ctor_set())
}
fn write_variant_name(
f: &mut std::fmt::Formatter<'_>,
ctor: &Constructor<Self>,
ty: &Self::Ty,
) -> std::fmt::Result {
ty.write_variant_name(f, ctor)
}
fn bug(&self, fmt: std::fmt::Arguments<'_>) -> Self::Error {
panic!("{}", fmt)
}
/// Abort when reaching the complexity limit. This is what we'll check in tests.
fn complexity_exceeded(&self) -> Result<(), Self::Error> {
Err(())
}
}
/// Construct a single pattern; see `pats!()`.
#[allow(unused_macros)]
macro_rules! pat {
($($rest:tt)*) => {{
let mut vec = pats!($($rest)*);
vec.pop().unwrap()
}};
}
/// A macro to construct patterns. Called like `pats!(type_expr; pattern, pattern, ..)` and returns
/// a `Vec<DeconstructedPat>`. A pattern can be nested and looks like `Constructor(pat, pat)` or
/// `Constructor { .i: pat, .j: pat }`, where `Constructor` is `Struct`, `Variant.i` (with index
/// `i`), as well as booleans and integer ranges.
///
/// The general structure of the macro is a tt-muncher with several stages identified with
/// `@something(args)`. The args are a key-value list (the keys ensure we don't mix the arguments
/// around) which is passed down and modified as needed. We then parse token-trees from
/// left-to-right. Non-trivial recursion happens when we parse the arguments to a pattern: we
/// recurse to parse the tokens inside `{..}`/`(..)`, and then we continue parsing anything that
/// follows.
macro_rules! pats {
// Entrypoint
// Parse `type; ..`
($ty:expr; $($rest:tt)*) => {{
#[allow(unused_imports)]
use rustc_pattern_analysis::{
constructor::{Constructor, IntRange, MaybeInfiniteInt, RangeEnd},
pat::DeconstructedPat,
};
let ty = $ty;
// The heart of the macro is designed to push `IndexedPat`s into a `Vec`, so we work around
// that.
let sub_tys = ::std::iter::repeat(&ty);
let mut vec = Vec::new();
pats!(@ctor(vec:vec, sub_tys:sub_tys, idx:0) $($rest)*);
vec.into_iter().map(|ipat| ipat.pat).collect::<Vec<_>>()
}};
// Parse `constructor ..`
(@ctor($($args:tt)*) true $($rest:tt)*) => {{
let ctor = Constructor::Bool(true);
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) false $($rest:tt)*) => {{
let ctor = Constructor::Bool(false);
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) Struct $($rest:tt)*) => {{
let ctor = Constructor::Struct;
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) ( $($fields:tt)* ) $($rest:tt)*) => {{
let ctor = Constructor::Struct; // tuples
pats!(@pat($($args)*, ctor:ctor) ( $($fields)* ) $($rest)*)
}};
(@ctor($($args:tt)*) Variant.$variant:ident $($rest:tt)*) => {{
let ctor = Constructor::Variant($variant);
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) Variant.$variant:literal $($rest:tt)*) => {{
let ctor = Constructor::Variant($variant);
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) _ $($rest:tt)*) => {{
let ctor = Constructor::Wildcard;
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
// Integers and int ranges
(@ctor($($args:tt)*) $($start:literal)?..$end:literal $($rest:tt)*) => {{
let ctor = Constructor::IntRange(IntRange::from_range(
pats!(@rangeboundary- $($start)?),
pats!(@rangeboundary+ $end),
RangeEnd::Excluded,
));
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) $($start:literal)?.. $($rest:tt)*) => {{
let ctor = Constructor::IntRange(IntRange::from_range(
pats!(@rangeboundary- $($start)?),
pats!(@rangeboundary+),
RangeEnd::Excluded,
));
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) $($start:literal)?..=$end:literal $($rest:tt)*) => {{
let ctor = Constructor::IntRange(IntRange::from_range(
pats!(@rangeboundary- $($start)?),
pats!(@rangeboundary+ $end),
RangeEnd::Included,
));
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) $int:literal $($rest:tt)*) => {{
let ctor = Constructor::IntRange(IntRange::from_range(
pats!(@rangeboundary- $int),
pats!(@rangeboundary+ $int),
RangeEnd::Included,
));
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
// Utility to manage range boundaries.
(@rangeboundary $sign:tt $int:literal) => { MaybeInfiniteInt::new_finite_uint($int) };
(@rangeboundary -) => { MaybeInfiniteInt::NegInfinity };
(@rangeboundary +) => { MaybeInfiniteInt::PosInfinity };
// Parse subfields: `(..)` or `{..}`
// Constructor with no fields, e.g. `bool` or `Variant.1`.
(@pat($($args:tt)*) $(,)?) => {
pats!(@pat($($args)*) {})
};
(@pat($($args:tt)*) , $($rest:tt)*) => {
pats!(@pat($($args)*) {}, $($rest)*)
};
// `(..)` and `{..}` are treated the same.
(@pat($($args:tt)*) ( $($subpat:tt)* ) $($rest:tt)*) => {{
pats!(@pat($($args)*) { $($subpat)* } $($rest)*)
}};
(@pat(vec:$vec:expr, sub_tys:$sub_tys:expr, idx:$idx:expr, ctor:$ctor:expr) { $($fields:tt)* } $($rest:tt)*) => {{
let sub_tys = $sub_tys;
let index = $idx;
// Silly dance to work with both a vec and `iter::repeat()`.
let ty = *(&sub_tys).clone().into_iter().nth(index).unwrap();
let ctor = $ctor;
let ctor_sub_tys = &ty.sub_tys(&ctor);
#[allow(unused_mut)]
let mut fields = Vec::new();
// Parse subpatterns (note the leading comma).
pats!(@fields(idx:0, vec:fields, sub_tys:ctor_sub_tys) ,$($fields)*);
let arity = ctor_sub_tys.len();
let pat = DeconstructedPat::new(ctor, fields, arity, ty, ()).at_index(index);
$vec.push(pat);
// Continue parsing further patterns.
pats!(@fields(idx:index+1, vec:$vec, sub_tys:sub_tys) $($rest)*);
}};
// Parse fields one by one.
// No fields left.
(@fields($($args:tt)*) $(,)?) => {};
// `.i: pat` sets the current index to `i`.
(@fields(idx:$_idx:expr, $($args:tt)*) , .$idx:literal : $($rest:tt)*) => {{
pats!(@ctor($($args)*, idx:$idx) $($rest)*);
}};
(@fields(idx:$_idx:expr, $($args:tt)*) , .$idx:ident : $($rest:tt)*) => {{
pats!(@ctor($($args)*, idx:$idx) $($rest)*);
}};
// Field without an explicit index; we use the current index which gets incremented above.
(@fields(idx:$idx:expr, $($args:tt)*) , $($rest:tt)*) => {{
pats!(@ctor($($args)*, idx:$idx) $($rest)*);
}};
}
|