1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
use regex_automata::{
hybrid::{
dfa::DFA,
regex::{self, Regex},
},
nfa::thompson,
MatchKind, SyntaxConfig,
};
use regex_syntax as syntax;
use regex_test::{
bstr::{BString, ByteSlice},
CompiledRegex, Match, MatchKind as TestMatchKind, RegexTest, RegexTests,
SearchKind as TestSearchKind, TestResult, TestRunner,
};
use crate::{suite, Result};
/// Tests the default configuration of the hybrid NFA/DFA.
#[test]
fn default() -> Result<()> {
let builder = Regex::builder();
TestRunner::new()?.test_iter(suite()?.iter(), compiler(builder)).assert();
Ok(())
}
/// Tests the hybrid NFA/DFA with NFA shrinking disabled.
///
/// This is actually the typical configuration one wants for a lazy DFA. NFA
/// shrinking is mostly only advantageous when building a full DFA since it
/// can sharply decrease the amount of time determinization takes. But NFA
/// shrinking is itself otherwise fairly expensive. Since a lazy DFA has
/// no compilation time (other than for building the NFA of course) before
/// executing a search, it's usually worth it to forgo NFA shrinking.
#[test]
fn no_nfa_shrink() -> Result<()> {
let mut builder = Regex::builder();
builder.thompson(thompson::Config::new().shrink(false));
TestRunner::new()?
// Without NFA shrinking, this test blows the default cache capacity.
.blacklist("expensive/regression-many-repeat-no-stack-overflow")
.test_iter(suite()?.iter(), compiler(builder))
.assert();
Ok(())
}
/// Tests the hybrid NFA/DFA when 'starts_for_each_pattern' is enabled.
#[test]
fn starts_for_each_pattern() -> Result<()> {
let mut builder = Regex::builder();
builder.dfa(DFA::config().starts_for_each_pattern(true));
TestRunner::new()?.test_iter(suite()?.iter(), compiler(builder)).assert();
Ok(())
}
/// Tests the hybrid NFA/DFA when byte classes are disabled.
///
/// N.B. Disabling byte classes doesn't avoid any indirection at search time.
/// All it does is cause every byte value to be its own distinct equivalence
/// class.
#[test]
fn no_byte_classes() -> Result<()> {
let mut builder = Regex::builder();
builder.dfa(DFA::config().byte_classes(false));
TestRunner::new()?.test_iter(suite()?.iter(), compiler(builder)).assert();
Ok(())
}
/// Tests that hybrid NFA/DFA never clears its cache for any test with the
/// default capacity.
///
/// N.B. If a regex suite test is added that causes the cache to be cleared,
/// then this should just skip that test. (Which can be done by calling the
/// 'blacklist' method on 'TestRunner'.)
#[test]
fn no_cache_clearing() -> Result<()> {
let mut builder = Regex::builder();
builder.dfa(DFA::config().minimum_cache_clear_count(Some(0)));
TestRunner::new()?.test_iter(suite()?.iter(), compiler(builder)).assert();
Ok(())
}
/// Tests the hybrid NFA/DFA when the minimum cache capacity is set.
#[test]
fn min_cache_capacity() -> Result<()> {
let mut builder = Regex::builder();
builder
.dfa(DFA::config().cache_capacity(0).skip_cache_capacity_check(true));
TestRunner::new()?.test_iter(suite()?.iter(), compiler(builder)).assert();
Ok(())
}
fn compiler(
mut builder: regex::Builder,
) -> impl FnMut(&RegexTest, &[BString]) -> Result<CompiledRegex> {
move |test, regexes| {
let regexes = regexes
.iter()
.map(|r| r.to_str().map(|s| s.to_string()))
.collect::<std::result::Result<Vec<String>, _>>()?;
// Check if our regex contains things that aren't supported by DFAs.
// That is, Unicode word boundaries when searching non-ASCII text.
let mut thompson = thompson::Builder::new();
thompson.syntax(config_syntax(test)).configure(config_thompson(test));
if let Ok(nfa) = thompson.build_many(®exes) {
let non_ascii = test.input().iter().any(|&b| !b.is_ascii());
if nfa.has_word_boundary_unicode() && non_ascii {
return Ok(CompiledRegex::skip());
}
}
if !configure_regex_builder(test, &mut builder) {
return Ok(CompiledRegex::skip());
}
let re = builder.build_many(®exes)?;
let mut cache = re.create_cache();
Ok(CompiledRegex::compiled(move |test| -> Vec<TestResult> {
run_test(&re, &mut cache, test)
}))
}
}
fn run_test(
re: &Regex,
cache: &mut regex::Cache,
test: &RegexTest,
) -> Vec<TestResult> {
let is_match = if re.is_match(cache, test.input()) {
TestResult::matched()
} else {
TestResult::no_match()
};
let is_match = is_match.name("is_match");
let find_matches = match test.search_kind() {
TestSearchKind::Earliest => {
let it = re
.find_earliest_iter(cache, test.input())
.take(test.match_limit().unwrap_or(std::usize::MAX))
.map(|m| Match {
id: m.pattern().as_usize(),
start: m.start(),
end: m.end(),
});
TestResult::matches(it).name("find_earliest_iter")
}
TestSearchKind::Leftmost => {
let it = re
.find_leftmost_iter(cache, test.input())
.take(test.match_limit().unwrap_or(std::usize::MAX))
.map(|m| Match {
id: m.pattern().as_usize(),
start: m.start(),
end: m.end(),
});
TestResult::matches(it).name("find_leftmost_iter")
}
TestSearchKind::Overlapping => {
let it = re
.find_overlapping_iter(cache, test.input())
.take(test.match_limit().unwrap_or(std::usize::MAX))
.map(|m| Match {
id: m.pattern().as_usize(),
start: m.start(),
end: m.end(),
});
TestResult::matches(it).name("find_overlapping_iter")
}
};
vec![is_match, find_matches]
}
/// Configures the given regex builder with all relevant settings on the given
/// regex test.
///
/// If the regex test has a setting that is unsupported, then this returns
/// false (implying the test should be skipped).
fn configure_regex_builder(
test: &RegexTest,
builder: &mut regex::Builder,
) -> bool {
let match_kind = match test.match_kind() {
TestMatchKind::All => MatchKind::All,
TestMatchKind::LeftmostFirst => MatchKind::LeftmostFirst,
TestMatchKind::LeftmostLongest => return false,
};
let dense_config = DFA::config()
.anchored(test.anchored())
.match_kind(match_kind)
.unicode_word_boundary(true);
let regex_config = Regex::config().utf8(test.utf8());
builder
.configure(regex_config)
.syntax(config_syntax(test))
.thompson(config_thompson(test))
.dfa(dense_config);
true
}
/// Configuration of a Thompson NFA compiler from a regex test.
fn config_thompson(test: &RegexTest) -> thompson::Config {
thompson::Config::new().utf8(test.utf8())
}
/// Configuration of the regex parser from a regex test.
fn config_syntax(test: &RegexTest) -> SyntaxConfig {
SyntaxConfig::new()
.case_insensitive(test.case_insensitive())
.unicode(test.unicode())
.utf8(test.utf8())
}
|