1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
#![warn(rust_2018_idioms)]
#![cfg(all(target_os = "freebsd", feature = "net"))]
use mio_aio::{AioFsyncMode, SourceApi};
use std::{
future::Future,
io, mem,
os::fd::AsFd,
os::unix::io::{AsRawFd, RawFd},
pin::{pin, Pin},
task::{Context, Poll},
};
use tempfile::tempfile;
use tokio::io::bsd::{Aio, AioSource};
use tokio_test::assert_pending;
mod aio {
use super::*;
#[derive(Debug)]
struct TokioSource<'fd>(mio_aio::Source<nix::sys::aio::AioFsync<'fd>>);
impl<'fd> AioSource for TokioSource<'fd> {
fn register(&mut self, kq: RawFd, token: usize) {
self.0.register_raw(kq, token)
}
fn deregister(&mut self) {
self.0.deregister_raw()
}
}
/// A very crude implementation of an AIO-based future
struct FsyncFut<'fd>(Aio<TokioSource<'fd>>);
impl<'fd> FsyncFut<'fd> {
pub fn submit(self: Pin<&mut Self>) -> io::Result<()> {
let p = unsafe { self.map_unchecked_mut(|s| &mut s.0 .0) };
match p.submit() {
Ok(()) => Ok(()),
Err(e) => Err(io::Error::from_raw_os_error(e as i32)),
}
}
}
impl<'fd> Future for FsyncFut<'fd> {
type Output = io::Result<()>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let poll_result = self.0.poll_ready(cx);
match poll_result {
Poll::Pending => Poll::Pending,
Poll::Ready(Err(e)) => Poll::Ready(Err(e)),
Poll::Ready(Ok(_ev)) => {
// At this point, we could clear readiness. But there's no
// point, since we're about to drop the Aio.
let p = unsafe { self.map_unchecked_mut(|s| &mut s.0 .0) };
let result = p.aio_return();
match result {
Ok(r) => Poll::Ready(Ok(r)),
Err(e) => Poll::Ready(Err(io::Error::from_raw_os_error(e as i32))),
}
}
}
}
}
/// Low-level AIO Source
///
/// An example bypassing mio_aio and Nix to demonstrate how the kevent
/// registration actually works, under the hood.
struct LlSource(Pin<Box<libc::aiocb>>);
impl LlSource {
fn fsync(mut self: Pin<&mut Self>) {
let r = unsafe {
let p = self.0.as_mut().get_unchecked_mut();
libc::aio_fsync(libc::O_SYNC, p)
};
assert_eq!(0, r);
}
}
impl AioSource for LlSource {
fn register(&mut self, kq: RawFd, token: usize) {
let mut sev: libc::sigevent = unsafe { mem::MaybeUninit::zeroed().assume_init() };
sev.sigev_notify = libc::SIGEV_KEVENT;
sev.sigev_signo = kq;
sev.sigev_value = libc::sigval {
sival_ptr: token as *mut libc::c_void,
};
self.0.aio_sigevent = sev;
}
fn deregister(&mut self) {
unsafe {
self.0.aio_sigevent = mem::zeroed();
}
}
}
struct LlFut(Aio<LlSource>);
impl LlFut {
pub fn fsync(self: Pin<&mut Self>) {
let p = unsafe { self.map_unchecked_mut(|s| &mut *(s.0)) };
p.fsync();
}
}
impl Future for LlFut {
type Output = std::io::Result<usize>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let poll_result = self.0.poll_ready(cx);
match poll_result {
Poll::Pending => Poll::Pending,
Poll::Ready(Err(e)) => Poll::Ready(Err(e)),
Poll::Ready(Ok(ev)) => {
// Clearing readiness makes the future non-idempotent; the
// caller can't poll it repeatedly after it has already
// returned Ready. But that's ok; most futures behave this
// way.
self.0.clear_ready(ev);
let r = unsafe { libc::aio_return(self.0 .0.as_mut().get_unchecked_mut()) };
if r >= 0 {
Poll::Ready(Ok(r as usize))
} else {
Poll::Ready(Err(io::Error::last_os_error()))
}
}
}
}
}
#[tokio::test]
async fn fsync() {
let f = tempfile().unwrap();
let fd = f.as_fd();
let mode = AioFsyncMode::O_SYNC;
let source = TokioSource(mio_aio::Fsync::fsync(fd, mode, 0));
let poll_aio = Aio::new_for_aio(source).unwrap();
let mut fut = pin!(FsyncFut(poll_aio));
fut.as_mut().submit().unwrap();
fut.await.unwrap();
}
#[tokio::test]
async fn ll_fsync() {
let f = tempfile().unwrap();
let fd = f.as_raw_fd();
let mut aiocb: libc::aiocb = unsafe { mem::MaybeUninit::zeroed().assume_init() };
aiocb.aio_fildes = fd;
let source = LlSource(Box::pin(aiocb));
let mut poll_aio = Aio::new_for_aio(source).unwrap();
let r = unsafe {
let p = poll_aio.0.as_mut().get_unchecked_mut();
libc::aio_fsync(libc::O_SYNC, p)
};
assert_eq!(0, r);
let fut = LlFut(poll_aio);
fut.await.unwrap();
}
/// A suitably crafted future type can reuse an Aio object
#[tokio::test]
async fn reuse() {
let f = tempfile().unwrap();
let fd = f.as_raw_fd();
let mut aiocb: libc::aiocb = unsafe { mem::MaybeUninit::zeroed().assume_init() };
aiocb.aio_fildes = fd;
let source = LlSource(Box::pin(aiocb));
let poll_aio = Aio::new_for_aio(source).unwrap();
// Send the operation to the kernel the first time
let mut fut = LlFut(poll_aio);
{
let mut pfut = Pin::new(&mut fut);
pfut.as_mut().fsync();
pfut.as_mut().await.unwrap();
}
// Check that readiness was cleared
let mut ctx = Context::from_waker(futures::task::noop_waker_ref());
assert_pending!(fut.0.poll_ready(&mut ctx));
// and reuse the future and its Aio object
{
let mut pfut = Pin::new(&mut fut);
pfut.as_mut().fsync();
pfut.as_mut().await.unwrap();
}
}
}
mod lio {
use super::*;
/// Low-level source based on lio_listio
///
/// An example demonstrating using AIO with `Interest::Lio`. mio_aio 0.8
/// doesn't include any bindings for lio_listio, so we've got to go
/// low-level.
struct LioSource<'a> {
aiocb: Pin<&'a mut [&'a mut libc::aiocb; 1]>,
sev: libc::sigevent,
}
impl<'a> LioSource<'a> {
fn new(aiocb: Pin<&'a mut [&'a mut libc::aiocb; 1]>) -> Self {
LioSource {
aiocb,
sev: unsafe { mem::zeroed() },
}
}
fn submit(mut self: Pin<&mut Self>) {
let p: *const *mut libc::aiocb =
unsafe { self.aiocb.as_mut().get_unchecked_mut() } as *const _ as *const *mut _;
let r = unsafe { libc::lio_listio(libc::LIO_NOWAIT, p, 1, &mut self.sev) };
assert_eq!(r, 0);
}
}
impl<'a> AioSource for LioSource<'a> {
fn register(&mut self, kq: RawFd, token: usize) {
let mut sev: libc::sigevent = unsafe { mem::MaybeUninit::zeroed().assume_init() };
sev.sigev_notify = libc::SIGEV_KEVENT;
sev.sigev_signo = kq;
sev.sigev_value = libc::sigval {
sival_ptr: token as *mut libc::c_void,
};
self.sev = sev;
}
fn deregister(&mut self) {
unsafe {
self.sev = mem::zeroed();
}
}
}
struct LioFut<'a>(Aio<LioSource<'a>>);
impl<'a> LioFut<'a> {
pub fn submit(self: Pin<&mut Self>) {
let p = unsafe { self.map_unchecked_mut(|s| &mut *(s.0)) };
p.submit();
}
}
impl<'a> Future for LioFut<'a> {
type Output = std::io::Result<usize>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let poll_result = self.0.poll_ready(cx);
match poll_result {
Poll::Pending => Poll::Pending,
Poll::Ready(Err(e)) => Poll::Ready(Err(e)),
Poll::Ready(Ok(ev)) => {
// Clearing readiness makes the future non-idempotent; the
// caller can't poll it repeatedly after it has already
// returned Ready. But that's ok; most futures behave this
// way. Clearing readiness is especially useful for
// lio_listio, because sometimes some operations will be
// ready but not all.
self.0.clear_ready(ev);
let r = unsafe {
let p1 = self.get_unchecked_mut();
let p2: &mut [&mut libc::aiocb; 1] =
p1.0.aiocb.as_mut().get_unchecked_mut();
let p3: &mut libc::aiocb = p2[0];
libc::aio_return(p3)
};
if r >= 0 {
Poll::Ready(Ok(r as usize))
} else {
Poll::Ready(Err(io::Error::last_os_error()))
}
}
}
}
}
/// An lio_listio operation with one fsync element
#[tokio::test]
async fn onewrite() {
const WBUF: &[u8] = b"abcdef";
let f = tempfile().unwrap();
let mut aiocb: libc::aiocb = unsafe { mem::zeroed() };
aiocb.aio_fildes = f.as_raw_fd();
aiocb.aio_lio_opcode = libc::LIO_WRITE;
aiocb.aio_nbytes = WBUF.len();
aiocb.aio_buf = WBUF.as_ptr() as *mut _;
let aiocb = pin!([&mut aiocb]);
let source = LioSource::new(aiocb);
let poll_aio = Aio::new_for_lio(source).unwrap();
// Send the operation to the kernel
let mut fut = pin!(LioFut(poll_aio));
fut.as_mut().submit();
fut.await.unwrap();
}
/// A suitably crafted future type can reuse an Aio object
#[tokio::test]
async fn reuse() {
const WBUF: &[u8] = b"abcdef";
let f = tempfile().unwrap();
let mut aiocb: libc::aiocb = unsafe { mem::zeroed() };
aiocb.aio_fildes = f.as_raw_fd();
aiocb.aio_lio_opcode = libc::LIO_WRITE;
aiocb.aio_nbytes = WBUF.len();
aiocb.aio_buf = WBUF.as_ptr() as *mut _;
let aiocb = pin!([&mut aiocb]);
let source = LioSource::new(aiocb);
let poll_aio = Aio::new_for_lio(source).unwrap();
// Send the operation to the kernel the first time
let mut fut = LioFut(poll_aio);
{
let mut pfut = Pin::new(&mut fut);
pfut.as_mut().submit();
pfut.as_mut().await.unwrap();
}
// Check that readiness was cleared
let mut ctx = Context::from_waker(futures::task::noop_waker_ref());
assert_pending!(fut.0.poll_ready(&mut ctx));
// and reuse the future and its Aio object
{
let mut pfut = Pin::new(&mut fut);
pfut.as_mut().submit();
pfut.as_mut().await.unwrap();
}
}
}
|