1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
#![allow(unknown_lints, unexpected_cfgs)]
#![warn(rust_2018_idioms)]
#![cfg(all(feature = "full", not(target_os = "wasi"), target_has_atomic = "64"))]
use std::sync::mpsc;
use std::time::Duration;
use tokio::runtime::Runtime;
#[test]
fn num_workers() {
let rt = current_thread();
assert_eq!(1, rt.metrics().num_workers());
let rt = threaded();
assert_eq!(2, rt.metrics().num_workers());
}
#[test]
fn num_alive_tasks() {
let rt = current_thread();
let metrics = rt.metrics();
assert_eq!(0, metrics.num_alive_tasks());
rt.block_on(rt.spawn(async move {
assert_eq!(1, metrics.num_alive_tasks());
}))
.unwrap();
assert_eq!(0, rt.metrics().num_alive_tasks());
let rt = threaded();
let metrics = rt.metrics();
assert_eq!(0, metrics.num_alive_tasks());
rt.block_on(rt.spawn(async move {
assert_eq!(1, metrics.num_alive_tasks());
}))
.unwrap();
// try for 10 seconds to see if this eventually succeeds.
// wake_join() is called before the task is released, so in multithreaded
// code, this means we sometimes exit the block_on before the counter decrements.
for _ in 0..100 {
if rt.metrics().num_alive_tasks() == 0 {
break;
}
std::thread::sleep(std::time::Duration::from_millis(100));
}
assert_eq!(0, rt.metrics().num_alive_tasks());
}
#[test]
fn global_queue_depth_current_thread() {
use std::thread;
let rt = current_thread();
let handle = rt.handle().clone();
let metrics = rt.metrics();
thread::spawn(move || {
handle.spawn(async {});
})
.join()
.unwrap();
assert_eq!(1, metrics.global_queue_depth());
}
#[test]
fn global_queue_depth_multi_thread() {
for _ in 0..10 {
let rt = threaded();
let metrics = rt.metrics();
if let Ok(_blocking_tasks) = try_block_threaded(&rt) {
for i in 0..10 {
assert_eq!(i, metrics.global_queue_depth());
rt.spawn(async {});
}
return;
}
}
panic!("exhausted every try to block the runtime");
}
fn try_block_threaded(rt: &Runtime) -> Result<Vec<mpsc::Sender<()>>, mpsc::RecvTimeoutError> {
let (tx, rx) = mpsc::channel();
let blocking_tasks = (0..rt.metrics().num_workers())
.map(|_| {
let tx = tx.clone();
let (task, barrier) = mpsc::channel();
// Spawn a task per runtime worker to block it.
rt.spawn(async move {
tx.send(()).ok();
barrier.recv().ok();
});
task
})
.collect();
// Make sure the previously spawned tasks are blocking the runtime by
// receiving a message from each blocking task.
//
// If this times out we were unsuccessful in blocking the runtime and hit
// a deadlock instead (which might happen and is expected behaviour).
for _ in 0..rt.metrics().num_workers() {
rx.recv_timeout(Duration::from_secs(1))?;
}
// Return senders of the mpsc channels used for blocking the runtime as a
// surrogate handle for the tasks. Sending a message or dropping the senders
// will unblock the runtime.
Ok(blocking_tasks)
}
fn current_thread() -> Runtime {
tokio::runtime::Builder::new_current_thread()
.enable_all()
.build()
.unwrap()
}
fn threaded() -> Runtime {
tokio::runtime::Builder::new_multi_thread()
.worker_threads(2)
.enable_all()
.build()
.unwrap()
}
|