1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
extern crate utf8;
use std::borrow::Cow;
use std::collections::VecDeque;
use std::io;
use utf8::*;
/// A re-implementation of std::str::from_utf8
pub fn str_from_utf8(input: &[u8]) -> Result<&str, usize> {
match decode(input) {
Ok(s) => return Ok(s),
Err(DecodeError::Invalid { valid_prefix, .. }) |
Err(DecodeError::Incomplete { valid_prefix, .. }) => Err(valid_prefix.len()),
}
}
#[test]
fn test_str_from_utf8() {
let xs = b"hello";
assert_eq!(str_from_utf8(xs), Ok("hello"));
let xs = "ศไทย中华Việt Nam".as_bytes();
assert_eq!(str_from_utf8(xs), Ok("ศไทย中华Việt Nam"));
let xs = b"hello\xFF";
assert!(str_from_utf8(xs).is_err());
}
#[test]
fn test_is_utf8() {
// Chars of 1, 2, 3, and 4 bytes
assert!(str_from_utf8("eé€\u{10000}".as_bytes()).is_ok());
// invalid prefix
assert!(str_from_utf8(&[0x80]).is_err());
// invalid 2 byte prefix
assert!(str_from_utf8(&[0xc0]).is_err());
assert!(str_from_utf8(&[0xc0, 0x10]).is_err());
// invalid 3 byte prefix
assert!(str_from_utf8(&[0xe0]).is_err());
assert!(str_from_utf8(&[0xe0, 0x10]).is_err());
assert!(str_from_utf8(&[0xe0, 0xff, 0x10]).is_err());
// invalid 4 byte prefix
assert!(str_from_utf8(&[0xf0]).is_err());
assert!(str_from_utf8(&[0xf0, 0x10]).is_err());
assert!(str_from_utf8(&[0xf0, 0xff, 0x10]).is_err());
assert!(str_from_utf8(&[0xf0, 0xff, 0xff, 0x10]).is_err());
// deny overlong encodings
assert!(str_from_utf8(&[0xc0, 0x80]).is_err());
assert!(str_from_utf8(&[0xc0, 0xae]).is_err());
assert!(str_from_utf8(&[0xe0, 0x80, 0x80]).is_err());
assert!(str_from_utf8(&[0xe0, 0x80, 0xaf]).is_err());
assert!(str_from_utf8(&[0xe0, 0x81, 0x81]).is_err());
assert!(str_from_utf8(&[0xf0, 0x82, 0x82, 0xac]).is_err());
assert!(str_from_utf8(&[0xf4, 0x90, 0x80, 0x80]).is_err());
// deny surrogates
assert!(str_from_utf8(&[0xED, 0xA0, 0x80]).is_err());
assert!(str_from_utf8(&[0xED, 0xBF, 0xBF]).is_err());
assert!(str_from_utf8(&[0xC2, 0x80]).is_ok());
assert!(str_from_utf8(&[0xDF, 0xBF]).is_ok());
assert!(str_from_utf8(&[0xE0, 0xA0, 0x80]).is_ok());
assert!(str_from_utf8(&[0xED, 0x9F, 0xBF]).is_ok());
assert!(str_from_utf8(&[0xEE, 0x80, 0x80]).is_ok());
assert!(str_from_utf8(&[0xEF, 0xBF, 0xBF]).is_ok());
assert!(str_from_utf8(&[0xF0, 0x90, 0x80, 0x80]).is_ok());
assert!(str_from_utf8(&[0xF4, 0x8F, 0xBF, 0xBF]).is_ok());
}
/// A re-implementation of String::from_utf8_lossy
pub fn string_from_utf8_lossy(input: &[u8]) -> Cow<str> {
let mut result = decode(input);
if let Ok(s) = result {
return s.into()
}
let mut string = String::with_capacity(input.len() + REPLACEMENT_CHARACTER.len());
loop {
match result {
Ok(s) => {
string.push_str(s);
return string.into()
}
Err(DecodeError::Incomplete { valid_prefix, .. }) => {
string.push_str(valid_prefix);
string.push_str(REPLACEMENT_CHARACTER);
return string.into()
}
Err(DecodeError::Invalid { valid_prefix, remaining_input, .. }) => {
string.push_str(valid_prefix);
string.push_str(REPLACEMENT_CHARACTER);
result = decode(remaining_input);
}
}
}
}
pub const DECODED_LOSSY: &'static [(&'static [u8], &'static str)] = &[
(b"hello", "hello"),
(b"\xe0\xb8\xa8\xe0\xb9\x84\xe0\xb8\x97\xe0\xb8\xa2\xe4\xb8\xad\xe5\x8d\x8e", "ศไทย中华"),
(b"Vi\xe1\xbb\x87t Nam", "Việt Nam"),
(b"Hello\xC2 There\xFF ", "Hello\u{FFFD} There\u{FFFD} "),
(b"Hello\xC0\x80 There", "Hello\u{FFFD}\u{FFFD} There"),
(b"\xE6\x83 Goodbye", "\u{FFFD} Goodbye"),
(b"\xF5foo\xF5\x80bar", "\u{FFFD}foo\u{FFFD}\u{FFFD}bar"),
(b"\xF5foo\xF5\xC2", "\u{FFFD}foo\u{FFFD}\u{FFFD}"),
(b"\xF1foo\xF1\x80bar\xF1\x80\x80baz", "\u{FFFD}foo\u{FFFD}bar\u{FFFD}baz"),
(b"\xF4foo\xF4\x80bar\xF4\xBFbaz", "\u{FFFD}foo\u{FFFD}bar\u{FFFD}\u{FFFD}baz"),
(b"\xF0\x80\x80\x80foo\xF0\x90\x80\x80bar", "\u{FFFD}\u{FFFD}\u{FFFD}\u{FFFD}foo\u{10000}bar"),
(b"\xF0\x90\x80foo", "\u{FFFD}foo"),
// surrogates
(b"\xED\xA0\x80foo\xED\xBF\xBFbar", "\u{FFFD}\u{FFFD}\u{FFFD}foo\u{FFFD}\u{FFFD}\u{FFFD}bar"),
];
#[test]
fn test_string_from_utf8_lossy() {
for &(input, expected) in DECODED_LOSSY {
assert_eq!(string_from_utf8_lossy(input), expected);
}
}
pub fn all_partitions<'a, F>(input: &'a [u8], f: F)
where F: Fn(&[&[u8]])
{
fn all_partitions_inner<'a, F>(chunks: &mut Vec<&'a [u8]>, input: &'a [u8], f: &F)
where F: Fn(&[&[u8]])
{
if input.is_empty() {
f(chunks)
}
for i in 1..(input.len() + 1) {
chunks.push(&input[..i]);
all_partitions_inner(chunks, &input[i..], f);
chunks.pop();
}
}
let mut chunks = Vec::new();
all_partitions_inner(&mut chunks, input, &f);
assert_eq!(chunks.len(), 0);
}
#[test]
fn test_incremental_decoder() {
for &(input, expected) in DECODED_LOSSY {
all_partitions(input, |chunks| {
let mut string = String::new();
{
let mut decoder = LossyDecoder::new(|s| string.push_str(s));
for &chunk in &*chunks {
decoder.feed(chunk);
}
}
assert_eq!(string, expected);
});
}
}
#[test]
fn test_bufread_decoder() {
for &(input, expected) in DECODED_LOSSY {
all_partitions(input, |chunks| {
let chunks = Chunks(chunks.to_vec().into());
let string = BufReadDecoder::read_to_string_lossy(chunks).unwrap();
assert_eq!(string, expected)
});
}
}
struct Chunks<'a>(VecDeque<&'a [u8]>);
impl<'a> io::Read for Chunks<'a> {
fn read(&mut self, _: &mut [u8]) -> io::Result<usize> {
unimplemented!()
}
}
impl<'a> io::BufRead for Chunks<'a> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
Ok(*self.0.front().unwrap())
}
fn consume(&mut self, bytes: usize) {
{
let front = self.0.front_mut().unwrap();
*front = &front[bytes..];
if !front.is_empty() {
return
}
}
if self.0.len() > 1 {
self.0.pop_front();
}
}
}
|