1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
use super::*;
pub fn writer(
writer: &Writer,
def: metadata::TypeDef,
generics: &[metadata::Type],
ident: &TokenStream,
constraints: &TokenStream,
_phantoms: &TokenStream,
cfg: &cfg::Cfg,
) -> TokenStream {
match def.type_name() {
// If the type is IIterator<T> then simply implement the Iterator trait over top.
metadata::TypeName::IIterator => {
return quote! {
impl<T: windows_core::RuntimeType> Iterator for IIterator<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
let result = self.Current().ok();
if result.is_some() {
self.MoveNext().ok()?;
}
result
}
}
};
}
// If the type is IIterable<T> then implement the IntoIterator trait and rely on the resulting
// IIterator<T> returned by first() to implement the Iterator trait.
metadata::TypeName::IIterable => {
return quote! {
impl<T: windows_core::RuntimeType> IntoIterator for IIterable<T> {
type Item = T;
type IntoIter = IIterator<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
IntoIterator::into_iter(&self)
}
}
impl<T: windows_core::RuntimeType> IntoIterator for &IIterable<T> {
type Item = T;
type IntoIter = IIterator<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
// TODO: not sure how to avoid this unwrap, although it should always succeed in practice.
self.First().unwrap()
}
}
};
}
// If the type is IVectorView<T> then provide the VectorViewIterator fast iterator.
metadata::TypeName::IVectorView => {
return quote! {
pub struct VectorViewIterator<T: windows_core::RuntimeType + 'static> {
vector: Option<IVectorView<T>>,
current: u32,
}
impl<T: windows_core::RuntimeType> VectorViewIterator<T> {
pub fn new(vector: Option<IVectorView<T>>) -> Self {
Self { vector, current: 0 }
}
}
impl<T: windows_core::RuntimeType> Iterator for VectorViewIterator<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
self.vector.as_ref()
.and_then(|vector| {
vector.GetAt(self.current).ok()
})
.and_then(|result| {
self.current += 1;
Some(result)
})
}
}
impl<T: windows_core::RuntimeType> IntoIterator for IVectorView<T> {
type Item = T;
type IntoIter = VectorViewIterator<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
IntoIterator::into_iter(&self)
}
}
impl<T: windows_core::RuntimeType> IntoIterator for &IVectorView<T> {
type Item = T;
type IntoIter = VectorViewIterator<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
// TODO: shouldn't need to clone - VectorViewIterator should hold a reference
VectorViewIterator::new(Some(Clone::clone(self)))
}
}
};
}
metadata::TypeName::IVector => {
return quote! {
pub struct VectorIterator<T: windows_core::RuntimeType + 'static> {
vector: Option<IVector<T>>,
current: u32,
}
impl<T: windows_core::RuntimeType> VectorIterator<T> {
pub fn new(vector: Option<IVector<T>>) -> Self {
Self { vector, current: 0 }
}
}
impl<T: windows_core::RuntimeType> Iterator for VectorIterator<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
self.vector.as_ref()
.and_then(|vector| {
vector.GetAt(self.current).ok()
})
.and_then(|result| {
self.current += 1;
Some(result)
})
}
}
impl<T: windows_core::RuntimeType> IntoIterator for IVector<T> {
type Item = T;
type IntoIter = VectorIterator<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
IntoIterator::into_iter(&self)
}
}
impl<T: windows_core::RuntimeType> IntoIterator for &IVector<T> {
type Item = T;
type IntoIter = VectorIterator<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
// TODO: shouldn't need to clone - VectorIterator should hold a reference
VectorIterator::new(Some(Clone::clone(self)))
}
}
};
}
_ => {}
}
let wfc = writer.namespace("Windows.Foundation.Collections");
let mut iterable = None;
let interfaces = metadata::type_interfaces(&metadata::Type::TypeDef(def, generics.to_vec()));
// If the class or interface is not one of the well-known collection interfaces, we then see whether it
// implements any one of them. Here is where we favor IVectorView/IVector over IIterable.
for interface in interfaces {
if let metadata::Type::TypeDef(interface, interface_generics) = &interface.ty {
match interface.type_name() {
metadata::TypeName::IVectorView => {
let item = writer.type_name(&interface_generics[0]);
let mut cfg = cfg.clone();
cfg::type_def_cfg_combine(writer, *interface, interface_generics, &mut cfg);
let features = writer.cfg_features(&cfg);
return quote! {
#features
impl<#constraints> IntoIterator for #ident {
type Item = #item;
type IntoIter = #wfc VectorViewIterator<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
IntoIterator::into_iter(&self)
}
}
#features
impl<#constraints> IntoIterator for &#ident {
type Item = #item;
type IntoIter = #wfc VectorViewIterator<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
#wfc VectorViewIterator::new(windows_core::Interface::cast(self).ok())
}
}
};
}
metadata::TypeName::IVector => {
let item = writer.type_name(&interface_generics[0]);
let mut cfg = cfg.clone();
cfg::type_def_cfg_combine(writer, *interface, interface_generics, &mut cfg);
let features = writer.cfg_features(&cfg);
return quote! {
#features
impl<#constraints> IntoIterator for #ident {
type Item = #item;
type IntoIter = #wfc VectorIterator<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
IntoIterator::into_iter(&self)
}
}
#features
impl<#constraints> IntoIterator for &#ident {
type Item = #item;
type IntoIter = #wfc VectorIterator<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
#wfc VectorIterator::new(windows_core::Interface::cast(self).ok())
}
}
};
}
metadata::TypeName::IIterable => {
iterable = Some((*interface, interface_generics.to_vec()));
}
_ => {}
}
}
}
match iterable {
None => TokenStream::new(),
Some((interface, interface_generics)) => {
let item = writer.type_name(&interface_generics[0]);
let mut cfg = cfg.clone();
cfg::type_def_cfg_combine(writer, interface, &interface_generics, &mut cfg);
let features = writer.cfg_features(&cfg);
quote! {
#features
impl<#constraints> IntoIterator for #ident {
type Item = #item;
type IntoIter = #wfc IIterator<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
IntoIterator::into_iter(&self)
}
}
#features
impl<#constraints> IntoIterator for &#ident {
type Item = #item;
type IntoIter = #wfc IIterator<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
// TODO: not sure how to avoid this unwrap, although it should always succeed in practice.
self.First().unwrap()
}
}
}
}
}
}
|