1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
//! zeroize integration tests.
use std::{
marker::{PhantomData, PhantomPinned},
mem::{size_of, MaybeUninit},
num::*,
};
use zeroize::*;
#[cfg(feature = "std")]
use std::ffi::CString;
#[derive(Clone, Debug, PartialEq)]
struct ZeroizedOnDrop(u64);
impl Drop for ZeroizedOnDrop {
fn drop(&mut self) {
self.0.zeroize();
}
}
#[test]
fn non_zero() {
macro_rules! non_zero_test {
($($type:ty),+) => {
$(let mut value = <$type>::new(42).unwrap();
value.zeroize();
assert_eq!(value.get(), 1);)+
};
}
non_zero_test!(
NonZeroI8,
NonZeroI16,
NonZeroI32,
NonZeroI64,
NonZeroI128,
NonZeroIsize,
NonZeroU8,
NonZeroU16,
NonZeroU32,
NonZeroU64,
NonZeroU128,
NonZeroUsize
);
}
#[test]
fn zeroize_byte_arrays() {
let mut arr = [42u8; 137];
arr.zeroize();
assert_eq!(arr.as_ref(), [0u8; 137].as_ref());
}
#[test]
fn zeroize_on_drop_byte_arrays() {
let mut arr = [ZeroizedOnDrop(42); 1];
unsafe { core::ptr::drop_in_place(&mut arr) };
assert_eq!(arr.as_ref(), [ZeroizedOnDrop(0); 1].as_ref());
}
#[test]
fn zeroize_maybeuninit_byte_arrays() {
let mut arr = [MaybeUninit::new(42u64); 64];
arr.zeroize();
let arr_init: [u64; 64] = unsafe { core::mem::transmute(arr) };
assert_eq!(arr_init, [0u64; 64]);
}
#[test]
fn zeroize_check_zerosize_types() {
// Since we assume these types have zero size, we test this holds for
// the current version of Rust.
assert_eq!(size_of::<()>(), 0);
assert_eq!(size_of::<PhantomPinned>(), 0);
assert_eq!(size_of::<PhantomData<usize>>(), 0);
}
#[test]
fn zeroize_check_tuple() {
let mut tup1 = (42u8,);
tup1.zeroize();
assert_eq!(tup1, (0u8,));
let mut tup2 = (42u8, 42u8);
tup2.zeroize();
assert_eq!(tup2, (0u8, 0u8));
}
#[test]
fn zeroize_on_drop_check_tuple() {
let mut tup1 = (ZeroizedOnDrop(42),);
unsafe { core::ptr::drop_in_place(&mut tup1) };
assert_eq!(tup1, (ZeroizedOnDrop(0),));
let mut tup2 = (ZeroizedOnDrop(42), ZeroizedOnDrop(42));
unsafe { core::ptr::drop_in_place(&mut tup2) };
assert_eq!(tup2, (ZeroizedOnDrop(0), ZeroizedOnDrop(0)));
}
#[cfg(feature = "alloc")]
#[test]
fn zeroize_vec() {
let mut vec = vec![42; 3];
vec.zeroize();
assert!(vec.is_empty());
}
#[cfg(feature = "alloc")]
#[test]
fn zeroize_vec_entire_capacity() {
#[derive(Clone)]
struct PanicOnNonZeroDrop(u64);
impl Zeroize for PanicOnNonZeroDrop {
fn zeroize(&mut self) {
self.0 = 0;
}
}
impl Drop for PanicOnNonZeroDrop {
fn drop(&mut self) {
if self.0 != 0 {
panic!("dropped non-zeroized data");
}
}
}
// Ensure that the entire capacity of the vec is zeroized and that no unitinialized data
// is ever interpreted as initialized
let mut vec = vec![PanicOnNonZeroDrop(42); 2];
unsafe {
vec.set_len(1);
}
vec.zeroize();
unsafe {
vec.set_len(2);
}
drop(vec);
}
#[cfg(feature = "alloc")]
#[test]
fn zeroize_string() {
let mut string = String::from("Hello, world!");
string.zeroize();
assert!(string.is_empty());
}
#[cfg(feature = "alloc")]
#[test]
fn zeroize_string_entire_capacity() {
let mut string = String::from("Hello, world!");
string.truncate(5);
string.zeroize();
// convert the string to a vec to easily access the unused capacity
let mut as_vec = string.into_bytes();
unsafe { as_vec.set_len(as_vec.capacity()) };
assert!(as_vec.iter().all(|byte| *byte == 0));
}
// TODO(tarcieri): debug flaky test (with potential UB?) See: RustCrypto/utils#774
#[cfg(feature = "std")]
#[ignore]
#[test]
fn zeroize_c_string() {
let mut cstring = CString::new("Hello, world!").expect("CString::new failed");
let orig_len = cstring.as_bytes().len();
let orig_ptr = cstring.as_bytes().as_ptr();
cstring.zeroize();
// This doesn't quite test that the original memory has been cleared, but only that
// cstring now owns an empty buffer
assert!(cstring.as_bytes().is_empty());
for i in 0..orig_len {
unsafe {
// Using a simple deref, only one iteration of the loop is performed
// presumably because after zeroize, the internal buffer has a length of one/
// `read_volatile` seems to "fix" this
// Note that this is very likely UB
assert_eq!(orig_ptr.add(i).read_volatile(), 0);
}
}
}
#[cfg(feature = "alloc")]
#[test]
fn zeroize_box() {
let mut boxed_arr = Box::new([42u8; 3]);
boxed_arr.zeroize();
assert_eq!(boxed_arr.as_ref(), &[0u8; 3]);
}
#[cfg(feature = "alloc")]
#[test]
fn asref() {
let mut buffer: Zeroizing<Vec<u8>> = Default::default();
let _asmut: &mut [u8] = buffer.as_mut();
let _asref: &[u8] = buffer.as_ref();
let mut buffer: Zeroizing<Box<[u8]>> = Default::default();
let _asmut: &mut [u8] = buffer.as_mut();
let _asref: &[u8] = buffer.as_ref();
}
|