1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
|
#include "LLVMWrapper.h"
#include "llvm-c/Core.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Lint.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/CodeGen/CommandFlags.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/LTO/LTO.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/Transforms/IPO/Internalize.h"
#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
#include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
#include "llvm/Transforms/Utils/CanonicalizeAliases.h"
#include "llvm/Transforms/Utils/FunctionImportUtils.h"
#include "llvm/Transforms/Utils/NameAnonGlobals.h"
#include <set>
#include <string>
#include <vector>
// Conditional includes prevent clang-format from fully sorting the list,
// so keep them separate.
#if LLVM_VERSION_GE(19, 0)
#include "llvm/Support/PGOOptions.h"
#endif
using namespace llvm;
static codegen::RegisterCodeGenFlags CGF;
typedef struct LLVMOpaquePass *LLVMPassRef;
typedef struct LLVMOpaqueTargetMachine *LLVMTargetMachineRef;
DEFINE_STDCXX_CONVERSION_FUNCTIONS(Pass, LLVMPassRef)
DEFINE_STDCXX_CONVERSION_FUNCTIONS(TargetMachine, LLVMTargetMachineRef)
extern "C" void LLVMRustTimeTraceProfilerInitialize() {
timeTraceProfilerInitialize(
/* TimeTraceGranularity */ 0,
/* ProcName */ "rustc");
}
extern "C" void LLVMRustTimeTraceProfilerFinishThread() {
timeTraceProfilerFinishThread();
}
extern "C" void LLVMRustTimeTraceProfilerFinish(const char *FileName) {
auto FN = StringRef(FileName);
std::error_code EC;
auto OS = raw_fd_ostream(FN, EC, sys::fs::CD_CreateAlways);
timeTraceProfilerWrite(OS);
timeTraceProfilerCleanup();
}
#ifdef LLVM_COMPONENT_X86
#define SUBTARGET_X86 SUBTARGET(X86)
#else
#define SUBTARGET_X86
#endif
#ifdef LLVM_COMPONENT_ARM
#define SUBTARGET_ARM SUBTARGET(ARM)
#else
#define SUBTARGET_ARM
#endif
#ifdef LLVM_COMPONENT_AARCH64
#define SUBTARGET_AARCH64 SUBTARGET(AArch64)
#else
#define SUBTARGET_AARCH64
#endif
#ifdef LLVM_COMPONENT_AVR
#define SUBTARGET_AVR SUBTARGET(AVR)
#else
#define SUBTARGET_AVR
#endif
#ifdef LLVM_COMPONENT_M68k
#define SUBTARGET_M68K SUBTARGET(M68k)
#else
#define SUBTARGET_M68K
#endif
#ifdef LLVM_COMPONENT_CSKY
#define SUBTARGET_CSKY SUBTARGET(CSKY)
#else
#define SUBTARGET_CSKY
#endif
#ifdef LLVM_COMPONENT_MIPS
#define SUBTARGET_MIPS SUBTARGET(Mips)
#else
#define SUBTARGET_MIPS
#endif
#ifdef LLVM_COMPONENT_POWERPC
#define SUBTARGET_PPC SUBTARGET(PPC)
#else
#define SUBTARGET_PPC
#endif
#ifdef LLVM_COMPONENT_SYSTEMZ
#define SUBTARGET_SYSTEMZ SUBTARGET(SystemZ)
#else
#define SUBTARGET_SYSTEMZ
#endif
#ifdef LLVM_COMPONENT_MSP430
#define SUBTARGET_MSP430 SUBTARGET(MSP430)
#else
#define SUBTARGET_MSP430
#endif
#ifdef LLVM_COMPONENT_RISCV
#define SUBTARGET_RISCV SUBTARGET(RISCV)
#else
#define SUBTARGET_RISCV
#endif
#ifdef LLVM_COMPONENT_SPARC
#define SUBTARGET_SPARC SUBTARGET(Sparc)
#else
#define SUBTARGET_SPARC
#endif
#ifdef LLVM_COMPONENT_XTENSA
#define SUBTARGET_XTENSA SUBTARGET(XTENSA)
#else
#define SUBTARGET_XTENSA
#endif
#ifdef LLVM_COMPONENT_HEXAGON
#define SUBTARGET_HEXAGON SUBTARGET(Hexagon)
#else
#define SUBTARGET_HEXAGON
#endif
#ifdef LLVM_COMPONENT_LOONGARCH
#define SUBTARGET_LOONGARCH SUBTARGET(LoongArch)
#else
#define SUBTARGET_LOONGARCH
#endif
#define GEN_SUBTARGETS \
SUBTARGET_X86 \
SUBTARGET_ARM \
SUBTARGET_AARCH64 \
SUBTARGET_AVR \
SUBTARGET_M68K \
SUBTARGET_CSKY \
SUBTARGET_MIPS \
SUBTARGET_PPC \
SUBTARGET_SYSTEMZ \
SUBTARGET_MSP430 \
SUBTARGET_SPARC \
SUBTARGET_HEXAGON \
SUBTARGET_XTENSA \
SUBTARGET_RISCV \
SUBTARGET_LOONGARCH
#define SUBTARGET(x) \
namespace llvm { \
extern const SubtargetFeatureKV x##FeatureKV[]; \
extern const SubtargetFeatureKV x##SubTypeKV[]; \
}
GEN_SUBTARGETS
#undef SUBTARGET
extern "C" bool LLVMRustHasFeature(LLVMTargetMachineRef TM,
const char *Feature) {
TargetMachine *Target = unwrap(TM);
const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
return MCInfo->checkFeatures(std::string("+") + Feature);
}
enum class LLVMRustCodeModel {
Tiny,
Small,
Kernel,
Medium,
Large,
None,
};
static std::optional<CodeModel::Model> fromRust(LLVMRustCodeModel Model) {
switch (Model) {
case LLVMRustCodeModel::Tiny:
return CodeModel::Tiny;
case LLVMRustCodeModel::Small:
return CodeModel::Small;
case LLVMRustCodeModel::Kernel:
return CodeModel::Kernel;
case LLVMRustCodeModel::Medium:
return CodeModel::Medium;
case LLVMRustCodeModel::Large:
return CodeModel::Large;
case LLVMRustCodeModel::None:
return std::nullopt;
default:
report_fatal_error("Bad CodeModel.");
}
}
enum class LLVMRustCodeGenOptLevel {
None,
Less,
Default,
Aggressive,
};
using CodeGenOptLevelEnum = llvm::CodeGenOptLevel;
static CodeGenOptLevelEnum fromRust(LLVMRustCodeGenOptLevel Level) {
switch (Level) {
case LLVMRustCodeGenOptLevel::None:
return CodeGenOptLevelEnum::None;
case LLVMRustCodeGenOptLevel::Less:
return CodeGenOptLevelEnum::Less;
case LLVMRustCodeGenOptLevel::Default:
return CodeGenOptLevelEnum::Default;
case LLVMRustCodeGenOptLevel::Aggressive:
return CodeGenOptLevelEnum::Aggressive;
default:
report_fatal_error("Bad CodeGenOptLevel.");
}
}
enum class LLVMRustPassBuilderOptLevel {
O0,
O1,
O2,
O3,
Os,
Oz,
};
static OptimizationLevel fromRust(LLVMRustPassBuilderOptLevel Level) {
switch (Level) {
case LLVMRustPassBuilderOptLevel::O0:
return OptimizationLevel::O0;
case LLVMRustPassBuilderOptLevel::O1:
return OptimizationLevel::O1;
case LLVMRustPassBuilderOptLevel::O2:
return OptimizationLevel::O2;
case LLVMRustPassBuilderOptLevel::O3:
return OptimizationLevel::O3;
case LLVMRustPassBuilderOptLevel::Os:
return OptimizationLevel::Os;
case LLVMRustPassBuilderOptLevel::Oz:
return OptimizationLevel::Oz;
default:
report_fatal_error("Bad PassBuilderOptLevel.");
}
}
enum class LLVMRustRelocModel {
Static,
PIC,
DynamicNoPic,
ROPI,
RWPI,
ROPIRWPI,
};
static Reloc::Model fromRust(LLVMRustRelocModel RustReloc) {
switch (RustReloc) {
case LLVMRustRelocModel::Static:
return Reloc::Static;
case LLVMRustRelocModel::PIC:
return Reloc::PIC_;
case LLVMRustRelocModel::DynamicNoPic:
return Reloc::DynamicNoPIC;
case LLVMRustRelocModel::ROPI:
return Reloc::ROPI;
case LLVMRustRelocModel::RWPI:
return Reloc::RWPI;
case LLVMRustRelocModel::ROPIRWPI:
return Reloc::ROPI_RWPI;
}
report_fatal_error("Bad RelocModel.");
}
enum class LLVMRustFloatABI {
Default,
Soft,
Hard,
};
static FloatABI::ABIType fromRust(LLVMRustFloatABI RustFloatAbi) {
switch (RustFloatAbi) {
case LLVMRustFloatABI::Default:
return FloatABI::Default;
case LLVMRustFloatABI::Soft:
return FloatABI::Soft;
case LLVMRustFloatABI::Hard:
return FloatABI::Hard;
}
report_fatal_error("Bad FloatABI.");
}
/// getLongestEntryLength - Return the length of the longest entry in the table.
template <typename KV> static size_t getLongestEntryLength(ArrayRef<KV> Table) {
size_t MaxLen = 0;
for (auto &I : Table)
MaxLen = std::max(MaxLen, std::strlen(I.Key));
return MaxLen;
}
extern "C" void LLVMRustPrintTargetCPUs(LLVMTargetMachineRef TM,
RustStringRef OutStr) {
ArrayRef<SubtargetSubTypeKV> CPUTable =
unwrap(TM)->getMCSubtargetInfo()->getAllProcessorDescriptions();
auto OS = RawRustStringOstream(OutStr);
// Just print a bare list of target CPU names, and let Rust-side code handle
// the full formatting of `--print=target-cpus`.
for (auto &CPU : CPUTable) {
OS << CPU.Key << "\n";
}
}
extern "C" size_t LLVMRustGetTargetFeaturesCount(LLVMTargetMachineRef TM) {
const TargetMachine *Target = unwrap(TM);
const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
const ArrayRef<SubtargetFeatureKV> FeatTable =
MCInfo->getAllProcessorFeatures();
return FeatTable.size();
}
extern "C" void LLVMRustGetTargetFeature(LLVMTargetMachineRef TM, size_t Index,
const char **Feature,
const char **Desc) {
const TargetMachine *Target = unwrap(TM);
const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
const ArrayRef<SubtargetFeatureKV> FeatTable =
MCInfo->getAllProcessorFeatures();
const SubtargetFeatureKV Feat = FeatTable[Index];
*Feature = Feat.Key;
*Desc = Feat.Desc;
}
extern "C" const char *LLVMRustGetHostCPUName(size_t *OutLen) {
StringRef Name = sys::getHostCPUName();
*OutLen = Name.size();
return Name.data();
}
extern "C" LLVMTargetMachineRef LLVMRustCreateTargetMachine(
const char *TripleStr, const char *CPU, const char *Feature,
const char *ABIStr, LLVMRustCodeModel RustCM, LLVMRustRelocModel RustReloc,
LLVMRustCodeGenOptLevel RustOptLevel, LLVMRustFloatABI RustFloatABIType,
bool FunctionSections, bool DataSections, bool UniqueSectionNames,
bool TrapUnreachable, bool Singlethread, bool VerboseAsm,
bool EmitStackSizeSection, bool RelaxELFRelocations, bool UseInitArray,
const char *SplitDwarfFile, const char *OutputObjFile,
const char *DebugInfoCompression, bool UseEmulatedTls,
const char *ArgsCstrBuff, size_t ArgsCstrBuffLen) {
auto OptLevel = fromRust(RustOptLevel);
auto RM = fromRust(RustReloc);
auto CM = fromRust(RustCM);
auto FloatABIType = fromRust(RustFloatABIType);
std::string Error;
auto Trip = Triple(Triple::normalize(TripleStr));
const llvm::Target *TheTarget =
TargetRegistry::lookupTarget(Trip.getTriple(), Error);
if (TheTarget == nullptr) {
LLVMRustSetLastError(Error.c_str());
return nullptr;
}
TargetOptions Options = codegen::InitTargetOptionsFromCodeGenFlags(Trip);
Options.FloatABIType = FloatABIType;
Options.DataSections = DataSections;
Options.FunctionSections = FunctionSections;
Options.UniqueSectionNames = UniqueSectionNames;
Options.MCOptions.AsmVerbose = VerboseAsm;
// Always preserve comments that were written by the user
Options.MCOptions.PreserveAsmComments = true;
Options.MCOptions.ABIName = ABIStr;
if (SplitDwarfFile) {
Options.MCOptions.SplitDwarfFile = SplitDwarfFile;
}
if (OutputObjFile) {
Options.ObjectFilenameForDebug = OutputObjFile;
}
if (!strcmp("zlib", DebugInfoCompression) &&
llvm::compression::zlib::isAvailable()) {
#if LLVM_VERSION_GE(19, 0)
Options.MCOptions.CompressDebugSections = DebugCompressionType::Zlib;
#else
Options.CompressDebugSections = DebugCompressionType::Zlib;
#endif
} else if (!strcmp("zstd", DebugInfoCompression) &&
llvm::compression::zstd::isAvailable()) {
#if LLVM_VERSION_GE(19, 0)
Options.MCOptions.CompressDebugSections = DebugCompressionType::Zstd;
#else
Options.CompressDebugSections = DebugCompressionType::Zstd;
#endif
} else if (!strcmp("none", DebugInfoCompression)) {
#if LLVM_VERSION_GE(19, 0)
Options.MCOptions.CompressDebugSections = DebugCompressionType::None;
#else
Options.CompressDebugSections = DebugCompressionType::None;
#endif
}
#if LLVM_VERSION_GE(19, 0)
Options.MCOptions.X86RelaxRelocations = RelaxELFRelocations;
#else
Options.RelaxELFRelocations = RelaxELFRelocations;
#endif
Options.UseInitArray = UseInitArray;
Options.EmulatedTLS = UseEmulatedTls;
if (TrapUnreachable) {
// Tell LLVM to codegen `unreachable` into an explicit trap instruction.
// This limits the extent of possible undefined behavior in some cases, as
// it prevents control flow from "falling through" into whatever code
// happens to be laid out next in memory.
Options.TrapUnreachable = true;
// But don't emit traps after other traps or no-returns unnecessarily.
// ...except for when targeting WebAssembly, because the NoTrapAfterNoreturn
// option causes bugs in the LLVM WebAssembly backend. You should be able to
// remove this check when Rust's minimum supported LLVM version is >= 18
// https://github.com/llvm/llvm-project/pull/65876
if (!Trip.isWasm()) {
Options.NoTrapAfterNoreturn = true;
}
}
if (Singlethread) {
Options.ThreadModel = ThreadModel::Single;
}
Options.EmitStackSizeSection = EmitStackSizeSection;
if (ArgsCstrBuff != nullptr) {
#if LLVM_VERSION_GE(20, 0)
int buffer_offset = 0;
assert(ArgsCstrBuff[ArgsCstrBuffLen - 1] == '\0');
auto Arg0 = std::string(ArgsCstrBuff);
buffer_offset = Arg0.size() + 1;
auto ArgsCppStr = std::string(ArgsCstrBuff + buffer_offset,
ArgsCstrBuffLen - buffer_offset);
auto i = 0;
while (i != std::string::npos) {
i = ArgsCppStr.find('\0', i + 1);
if (i != std::string::npos)
ArgsCppStr.replace(i, 1, " ");
}
Options.MCOptions.Argv0 = Arg0;
Options.MCOptions.CommandlineArgs = ArgsCppStr;
#else
int buffer_offset = 0;
assert(ArgsCstrBuff[ArgsCstrBuffLen - 1] == '\0');
const size_t arg0_len = std::strlen(ArgsCstrBuff);
char *arg0 = new char[arg0_len + 1];
memcpy(arg0, ArgsCstrBuff, arg0_len);
arg0[arg0_len] = '\0';
buffer_offset += arg0_len + 1;
const int num_cmd_arg_strings = std::count(
&ArgsCstrBuff[buffer_offset], &ArgsCstrBuff[ArgsCstrBuffLen], '\0');
std::string *cmd_arg_strings = new std::string[num_cmd_arg_strings];
for (int i = 0; i < num_cmd_arg_strings; ++i) {
assert(buffer_offset < ArgsCstrBuffLen);
const int len = std::strlen(ArgsCstrBuff + buffer_offset);
cmd_arg_strings[i] = std::string(&ArgsCstrBuff[buffer_offset], len);
buffer_offset += len + 1;
}
assert(buffer_offset == ArgsCstrBuffLen);
Options.MCOptions.Argv0 = arg0;
Options.MCOptions.CommandLineArgs =
llvm::ArrayRef<std::string>(cmd_arg_strings, num_cmd_arg_strings);
#endif
}
TargetMachine *TM = TheTarget->createTargetMachine(
Trip.getTriple(), CPU, Feature, Options, RM, CM, OptLevel);
return wrap(TM);
}
extern "C" void LLVMRustDisposeTargetMachine(LLVMTargetMachineRef TM) {
#if LLVM_VERSION_LT(20, 0)
MCTargetOptions &MCOptions = unwrap(TM)->Options.MCOptions;
delete[] MCOptions.Argv0;
delete[] MCOptions.CommandLineArgs.data();
#endif
delete unwrap(TM);
}
// Unfortunately, the LLVM C API doesn't provide a way to create the
// TargetLibraryInfo pass, so we use this method to do so.
extern "C" void LLVMRustAddLibraryInfo(LLVMPassManagerRef PMR, LLVMModuleRef M,
bool DisableSimplifyLibCalls) {
auto TargetTriple = Triple(unwrap(M)->getTargetTriple());
auto TLII = TargetLibraryInfoImpl(TargetTriple);
if (DisableSimplifyLibCalls)
TLII.disableAllFunctions();
unwrap(PMR)->add(new TargetLibraryInfoWrapperPass(TLII));
}
extern "C" void LLVMRustSetLLVMOptions(int Argc, char **Argv) {
// Initializing the command-line options more than once is not allowed. So,
// check if they've already been initialized. (This could happen if we're
// being called from rustpkg, for example). If the arguments change, then
// that's just kinda unfortunate.
static bool Initialized = false;
if (Initialized)
return;
Initialized = true;
cl::ParseCommandLineOptions(Argc, Argv);
}
enum class LLVMRustFileType {
AssemblyFile,
ObjectFile,
};
static CodeGenFileType fromRust(LLVMRustFileType Type) {
switch (Type) {
case LLVMRustFileType::AssemblyFile:
return CodeGenFileType::AssemblyFile;
case LLVMRustFileType::ObjectFile:
return CodeGenFileType::ObjectFile;
default:
report_fatal_error("Bad FileType.");
}
}
extern "C" LLVMRustResult
LLVMRustWriteOutputFile(LLVMTargetMachineRef Target, LLVMPassManagerRef PMR,
LLVMModuleRef M, const char *Path, const char *DwoPath,
LLVMRustFileType RustFileType, bool VerifyIR) {
llvm::legacy::PassManager *PM = unwrap<llvm::legacy::PassManager>(PMR);
auto FileType = fromRust(RustFileType);
std::string ErrorInfo;
std::error_code EC;
auto OS = raw_fd_ostream(Path, EC, sys::fs::OF_None);
if (EC)
ErrorInfo = EC.message();
if (ErrorInfo != "") {
LLVMRustSetLastError(ErrorInfo.c_str());
return LLVMRustResult::Failure;
}
auto BOS = buffer_ostream(OS);
if (DwoPath) {
auto DOS = raw_fd_ostream(DwoPath, EC, sys::fs::OF_None);
EC.clear();
if (EC)
ErrorInfo = EC.message();
if (ErrorInfo != "") {
LLVMRustSetLastError(ErrorInfo.c_str());
return LLVMRustResult::Failure;
}
auto DBOS = buffer_ostream(DOS);
unwrap(Target)->addPassesToEmitFile(*PM, BOS, &DBOS, FileType, !VerifyIR);
PM->run(*unwrap(M));
} else {
unwrap(Target)->addPassesToEmitFile(*PM, BOS, nullptr, FileType, !VerifyIR);
PM->run(*unwrap(M));
}
// Apparently `addPassesToEmitFile` adds a pointer to our on-the-stack output
// stream (OS), so the only real safe place to delete this is here? Don't we
// wish this was written in Rust?
LLVMDisposePassManager(PMR);
return LLVMRustResult::Success;
}
extern "C" typedef void (*LLVMRustSelfProfileBeforePassCallback)(
void *, // LlvmSelfProfiler
const char *, // pass name
const char *); // IR name
extern "C" typedef void (*LLVMRustSelfProfileAfterPassCallback)(
void *); // LlvmSelfProfiler
std::string LLVMRustwrappedIrGetName(const llvm::Any &WrappedIr) {
if (const auto *Cast = any_cast<const Module *>(&WrappedIr))
return (*Cast)->getName().str();
if (const auto *Cast = any_cast<const Function *>(&WrappedIr))
return (*Cast)->getName().str();
if (const auto *Cast = any_cast<const Loop *>(&WrappedIr))
return (*Cast)->getName().str();
if (const auto *Cast = any_cast<const LazyCallGraph::SCC *>(&WrappedIr))
return (*Cast)->getName();
return "<UNKNOWN>";
}
void LLVMSelfProfileInitializeCallbacks(
PassInstrumentationCallbacks &PIC, void *LlvmSelfProfiler,
LLVMRustSelfProfileBeforePassCallback BeforePassCallback,
LLVMRustSelfProfileAfterPassCallback AfterPassCallback) {
PIC.registerBeforeNonSkippedPassCallback(
[LlvmSelfProfiler, BeforePassCallback](StringRef Pass, llvm::Any Ir) {
std::string PassName = Pass.str();
std::string IrName = LLVMRustwrappedIrGetName(Ir);
BeforePassCallback(LlvmSelfProfiler, PassName.c_str(), IrName.c_str());
});
PIC.registerAfterPassCallback(
[LlvmSelfProfiler, AfterPassCallback](
StringRef Pass, llvm::Any IR, const PreservedAnalyses &Preserved) {
AfterPassCallback(LlvmSelfProfiler);
});
PIC.registerAfterPassInvalidatedCallback(
[LlvmSelfProfiler,
AfterPassCallback](StringRef Pass, const PreservedAnalyses &Preserved) {
AfterPassCallback(LlvmSelfProfiler);
});
PIC.registerBeforeAnalysisCallback(
[LlvmSelfProfiler, BeforePassCallback](StringRef Pass, llvm::Any Ir) {
std::string PassName = Pass.str();
std::string IrName = LLVMRustwrappedIrGetName(Ir);
BeforePassCallback(LlvmSelfProfiler, PassName.c_str(), IrName.c_str());
});
PIC.registerAfterAnalysisCallback(
[LlvmSelfProfiler, AfterPassCallback](StringRef Pass, llvm::Any Ir) {
AfterPassCallback(LlvmSelfProfiler);
});
}
enum class LLVMRustOptStage {
PreLinkNoLTO,
PreLinkThinLTO,
PreLinkFatLTO,
ThinLTO,
FatLTO,
};
struct LLVMRustSanitizerOptions {
bool SanitizeAddress;
bool SanitizeAddressRecover;
bool SanitizeCFI;
bool SanitizeDataFlow;
char **SanitizeDataFlowABIList;
size_t SanitizeDataFlowABIListLen;
bool SanitizeKCFI;
bool SanitizeMemory;
bool SanitizeMemoryRecover;
int SanitizeMemoryTrackOrigins;
bool SanitizeThread;
bool SanitizeHWAddress;
bool SanitizeHWAddressRecover;
bool SanitizeKernelAddress;
bool SanitizeKernelAddressRecover;
};
// This symbol won't be available or used when Enzyme is not enabled
#ifdef ENZYME
extern "C" void registerEnzyme(llvm::PassBuilder &PB);
#endif
extern "C" LLVMRustResult LLVMRustOptimize(
LLVMModuleRef ModuleRef, LLVMTargetMachineRef TMRef,
LLVMRustPassBuilderOptLevel OptLevelRust, LLVMRustOptStage OptStage,
bool IsLinkerPluginLTO, bool NoPrepopulatePasses, bool VerifyIR,
bool LintIR, bool UseThinLTOBuffers, bool MergeFunctions, bool UnrollLoops,
bool SLPVectorize, bool LoopVectorize, bool DisableSimplifyLibCalls,
bool EmitLifetimeMarkers, bool RunEnzyme,
LLVMRustSanitizerOptions *SanitizerOptions, const char *PGOGenPath,
const char *PGOUsePath, bool InstrumentCoverage,
const char *InstrProfileOutput, const char *PGOSampleUsePath,
bool DebugInfoForProfiling, void *LlvmSelfProfiler,
LLVMRustSelfProfileBeforePassCallback BeforePassCallback,
LLVMRustSelfProfileAfterPassCallback AfterPassCallback,
const char *ExtraPasses, size_t ExtraPassesLen, const char *LLVMPlugins,
size_t LLVMPluginsLen) {
Module *TheModule = unwrap(ModuleRef);
TargetMachine *TM = unwrap(TMRef);
OptimizationLevel OptLevel = fromRust(OptLevelRust);
PipelineTuningOptions PTO;
PTO.LoopUnrolling = UnrollLoops;
PTO.LoopInterleaving = UnrollLoops;
PTO.LoopVectorization = LoopVectorize;
PTO.SLPVectorization = SLPVectorize;
PTO.MergeFunctions = MergeFunctions;
PassInstrumentationCallbacks PIC;
if (LlvmSelfProfiler) {
LLVMSelfProfileInitializeCallbacks(PIC, LlvmSelfProfiler,
BeforePassCallback, AfterPassCallback);
}
std::optional<PGOOptions> PGOOpt;
auto FS = vfs::getRealFileSystem();
if (PGOGenPath) {
assert(!PGOUsePath && !PGOSampleUsePath);
PGOOpt = PGOOptions(PGOGenPath, "", "", "", FS, PGOOptions::IRInstr,
PGOOptions::NoCSAction,
#if LLVM_VERSION_GE(19, 0)
PGOOptions::ColdFuncOpt::Default,
#endif
DebugInfoForProfiling);
} else if (PGOUsePath) {
assert(!PGOSampleUsePath);
PGOOpt = PGOOptions(PGOUsePath, "", "", "", FS, PGOOptions::IRUse,
PGOOptions::NoCSAction,
#if LLVM_VERSION_GE(19, 0)
PGOOptions::ColdFuncOpt::Default,
#endif
DebugInfoForProfiling);
} else if (PGOSampleUsePath) {
PGOOpt = PGOOptions(PGOSampleUsePath, "", "", "", FS, PGOOptions::SampleUse,
PGOOptions::NoCSAction,
#if LLVM_VERSION_GE(19, 0)
PGOOptions::ColdFuncOpt::Default,
#endif
DebugInfoForProfiling);
} else if (DebugInfoForProfiling) {
PGOOpt = PGOOptions("", "", "", "", FS, PGOOptions::NoAction,
PGOOptions::NoCSAction,
#if LLVM_VERSION_GE(19, 0)
PGOOptions::ColdFuncOpt::Default,
#endif
DebugInfoForProfiling);
}
auto PB = PassBuilder(TM, PTO, PGOOpt, &PIC);
LoopAnalysisManager LAM;
FunctionAnalysisManager FAM;
CGSCCAnalysisManager CGAM;
ModuleAnalysisManager MAM;
StandardInstrumentations SI(TheModule->getContext(),
/*DebugLogging=*/false);
SI.registerCallbacks(PIC, &MAM);
if (LLVMPluginsLen) {
auto PluginsStr = StringRef(LLVMPlugins, LLVMPluginsLen);
SmallVector<StringRef> Plugins;
PluginsStr.split(Plugins, ',', -1, false);
for (auto PluginPath : Plugins) {
auto Plugin = PassPlugin::Load(PluginPath.str());
if (!Plugin) {
auto Err = Plugin.takeError();
auto ErrMsg = llvm::toString(std::move(Err));
LLVMRustSetLastError(ErrMsg.c_str());
return LLVMRustResult::Failure;
}
Plugin->registerPassBuilderCallbacks(PB);
}
}
FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
Triple TargetTriple(TheModule->getTargetTriple());
std::unique_ptr<TargetLibraryInfoImpl> TLII(
new TargetLibraryInfoImpl(TargetTriple));
if (DisableSimplifyLibCalls)
TLII->disableAllFunctions();
FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
PB.registerModuleAnalyses(MAM);
PB.registerCGSCCAnalyses(CGAM);
PB.registerFunctionAnalyses(FAM);
PB.registerLoopAnalyses(LAM);
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
// We manually collect pipeline callbacks so we can apply them at O0, where
// the PassBuilder does not create a pipeline.
std::vector<std::function<void(ModulePassManager &, OptimizationLevel)>>
PipelineStartEPCallbacks;
#if LLVM_VERSION_GE(20, 0)
std::vector<std::function<void(ModulePassManager &, OptimizationLevel,
ThinOrFullLTOPhase)>>
OptimizerLastEPCallbacks;
#else
std::vector<std::function<void(ModulePassManager &, OptimizationLevel)>>
OptimizerLastEPCallbacks;
#endif
if (!IsLinkerPluginLTO && SanitizerOptions && SanitizerOptions->SanitizeCFI &&
!NoPrepopulatePasses) {
PipelineStartEPCallbacks.push_back(
[](ModulePassManager &MPM, OptimizationLevel Level) {
MPM.addPass(LowerTypeTestsPass(
/*ExportSummary=*/nullptr,
/*ImportSummary=*/nullptr));
});
}
if (VerifyIR) {
PipelineStartEPCallbacks.push_back(
[VerifyIR](ModulePassManager &MPM, OptimizationLevel Level) {
MPM.addPass(VerifierPass());
});
}
if (LintIR) {
PipelineStartEPCallbacks.push_back(
[](ModulePassManager &MPM, OptimizationLevel Level) {
MPM.addPass(createModuleToFunctionPassAdaptor(LintPass()));
});
}
if (InstrumentCoverage) {
PipelineStartEPCallbacks.push_back(
[InstrProfileOutput](ModulePassManager &MPM, OptimizationLevel Level) {
InstrProfOptions Options;
if (InstrProfileOutput) {
Options.InstrProfileOutput = InstrProfileOutput;
}
// cargo run tests in multhreading mode by default
// so use atomics for coverage counters
Options.Atomic = true;
MPM.addPass(InstrProfilingLoweringPass(Options, false));
});
}
if (SanitizerOptions) {
if (SanitizerOptions->SanitizeDataFlow) {
std::vector<std::string> ABIListFiles(
SanitizerOptions->SanitizeDataFlowABIList,
SanitizerOptions->SanitizeDataFlowABIList +
SanitizerOptions->SanitizeDataFlowABIListLen);
OptimizerLastEPCallbacks.push_back(
#if LLVM_VERSION_GE(20, 0)
[ABIListFiles](ModulePassManager &MPM, OptimizationLevel Level,
ThinOrFullLTOPhase phase) {
#else
[ABIListFiles](ModulePassManager &MPM, OptimizationLevel Level) {
#endif
MPM.addPass(DataFlowSanitizerPass(ABIListFiles));
});
}
if (SanitizerOptions->SanitizeMemory) {
MemorySanitizerOptions Options(
SanitizerOptions->SanitizeMemoryTrackOrigins,
SanitizerOptions->SanitizeMemoryRecover,
/*CompileKernel=*/false,
/*EagerChecks=*/true);
OptimizerLastEPCallbacks.push_back(
#if LLVM_VERSION_GE(20, 0)
[Options](ModulePassManager &MPM, OptimizationLevel Level,
ThinOrFullLTOPhase phase) {
#else
[Options](ModulePassManager &MPM, OptimizationLevel Level) {
#endif
MPM.addPass(MemorySanitizerPass(Options));
});
}
if (SanitizerOptions->SanitizeThread) {
OptimizerLastEPCallbacks.push_back(
#if LLVM_VERSION_GE(20, 0)
[](ModulePassManager &MPM, OptimizationLevel Level,
ThinOrFullLTOPhase phase) {
#else
[](ModulePassManager &MPM, OptimizationLevel Level) {
#endif
MPM.addPass(ModuleThreadSanitizerPass());
MPM.addPass(
createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
});
}
if (SanitizerOptions->SanitizeAddress ||
SanitizerOptions->SanitizeKernelAddress) {
OptimizerLastEPCallbacks.push_back(
#if LLVM_VERSION_GE(20, 0)
[SanitizerOptions, TM](ModulePassManager &MPM,
OptimizationLevel Level,
ThinOrFullLTOPhase phase) {
#else
[SanitizerOptions, TM](ModulePassManager &MPM,
OptimizationLevel Level) {
#endif
auto CompileKernel = SanitizerOptions->SanitizeKernelAddress;
AddressSanitizerOptions opts = AddressSanitizerOptions{
CompileKernel,
SanitizerOptions->SanitizeAddressRecover ||
SanitizerOptions->SanitizeKernelAddressRecover,
/*UseAfterScope=*/true,
AsanDetectStackUseAfterReturnMode::Runtime,
};
MPM.addPass(AddressSanitizerPass(
opts,
/*UseGlobalGC*/ true,
// UseOdrIndicator should be false on windows machines
// https://reviews.llvm.org/D137227
!TM->getTargetTriple().isOSWindows()));
});
}
if (SanitizerOptions->SanitizeHWAddress) {
OptimizerLastEPCallbacks.push_back(
#if LLVM_VERSION_GE(20, 0)
[SanitizerOptions](ModulePassManager &MPM, OptimizationLevel Level,
ThinOrFullLTOPhase phase) {
#else
[SanitizerOptions](ModulePassManager &MPM, OptimizationLevel Level) {
#endif
HWAddressSanitizerOptions opts(
/*CompileKernel=*/false,
SanitizerOptions->SanitizeHWAddressRecover,
/*DisableOptimization=*/false);
MPM.addPass(HWAddressSanitizerPass(opts));
});
}
}
ModulePassManager MPM;
bool NeedThinLTOBufferPasses = UseThinLTOBuffers;
if (!NoPrepopulatePasses) {
// The pre-link pipelines don't support O0 and require using
// buildO0DefaultPipeline() instead. At the same time, the LTO pipelines do
// support O0 and using them is required.
bool IsLTO = OptStage == LLVMRustOptStage::ThinLTO ||
OptStage == LLVMRustOptStage::FatLTO;
if (OptLevel == OptimizationLevel::O0 && !IsLTO) {
for (const auto &C : PipelineStartEPCallbacks)
PB.registerPipelineStartEPCallback(C);
for (const auto &C : OptimizerLastEPCallbacks)
PB.registerOptimizerLastEPCallback(C);
// We manually schedule ThinLTOBufferPasses below, so don't pass the value
// to enable it here.
MPM = PB.buildO0DefaultPipeline(OptLevel);
} else {
for (const auto &C : PipelineStartEPCallbacks)
PB.registerPipelineStartEPCallback(C);
for (const auto &C : OptimizerLastEPCallbacks)
PB.registerOptimizerLastEPCallback(C);
switch (OptStage) {
case LLVMRustOptStage::PreLinkNoLTO:
MPM = PB.buildPerModuleDefaultPipeline(OptLevel);
break;
case LLVMRustOptStage::PreLinkThinLTO:
MPM = PB.buildThinLTOPreLinkDefaultPipeline(OptLevel);
NeedThinLTOBufferPasses = false;
break;
case LLVMRustOptStage::PreLinkFatLTO:
MPM = PB.buildLTOPreLinkDefaultPipeline(OptLevel);
NeedThinLTOBufferPasses = false;
break;
case LLVMRustOptStage::ThinLTO:
// FIXME: Does it make sense to pass the ModuleSummaryIndex?
// It only seems to be needed for C++ specific optimizations.
MPM = PB.buildThinLTODefaultPipeline(OptLevel, nullptr);
break;
case LLVMRustOptStage::FatLTO:
MPM = PB.buildLTODefaultPipeline(OptLevel, nullptr);
break;
}
}
} else {
// We're not building any of the default pipelines but we still want to
// add the verifier, instrumentation, etc passes if they were requested
for (const auto &C : PipelineStartEPCallbacks)
C(MPM, OptLevel);
for (const auto &C : OptimizerLastEPCallbacks)
#if LLVM_VERSION_GE(20, 0)
C(MPM, OptLevel, ThinOrFullLTOPhase::None);
#else
C(MPM, OptLevel);
#endif
}
if (ExtraPassesLen) {
if (auto Err =
PB.parsePassPipeline(MPM, StringRef(ExtraPasses, ExtraPassesLen))) {
std::string ErrMsg = toString(std::move(Err));
LLVMRustSetLastError(ErrMsg.c_str());
return LLVMRustResult::Failure;
}
}
if (NeedThinLTOBufferPasses) {
MPM.addPass(CanonicalizeAliasesPass());
MPM.addPass(NameAnonGlobalPass());
}
// now load "-enzyme" pass:
#ifdef ENZYME
if (RunEnzyme) {
registerEnzyme(PB);
if (auto Err = PB.parsePassPipeline(MPM, "enzyme")) {
std::string ErrMsg = toString(std::move(Err));
LLVMRustSetLastError(ErrMsg.c_str());
return LLVMRustResult::Failure;
}
}
#endif
// Upgrade all calls to old intrinsics first.
for (Module::iterator I = TheModule->begin(), E = TheModule->end(); I != E;)
UpgradeCallsToIntrinsic(&*I++); // must be post-increment, as we remove
MPM.run(*TheModule, MAM);
return LLVMRustResult::Success;
}
// Callback to demangle function name
// Parameters:
// * name to be demangled
// * name len
// * output buffer
// * output buffer len
// Returns len of demangled string, or 0 if demangle failed.
typedef size_t (*DemangleFn)(const char *, size_t, char *, size_t);
namespace {
class RustAssemblyAnnotationWriter : public AssemblyAnnotationWriter {
DemangleFn Demangle;
std::vector<char> Buf;
public:
RustAssemblyAnnotationWriter(DemangleFn Demangle) : Demangle(Demangle) {}
// Return empty string if demangle failed
// or if name does not need to be demangled
StringRef CallDemangle(StringRef name) {
if (!Demangle) {
return StringRef();
}
if (Buf.size() < name.size() * 2) {
// Semangled name usually shorter than mangled,
// but allocate twice as much memory just in case
Buf.resize(name.size() * 2);
}
auto R = Demangle(name.data(), name.size(), Buf.data(), Buf.size());
if (!R) {
// Demangle failed.
return StringRef();
}
auto Demangled = StringRef(Buf.data(), R);
if (Demangled == name) {
// Do not print anything if demangled name is equal to mangled.
return StringRef();
}
return Demangled;
}
void emitFunctionAnnot(const Function *F,
formatted_raw_ostream &OS) override {
StringRef Demangled = CallDemangle(F->getName());
if (Demangled.empty()) {
return;
}
OS << "; " << Demangled << "\n";
}
void emitInstructionAnnot(const Instruction *I,
formatted_raw_ostream &OS) override {
const char *Name;
const Value *Value;
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
Name = "call";
Value = CI->getCalledOperand();
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
Name = "invoke";
Value = II->getCalledOperand();
} else {
// Could demangle more operations, e. g.
// `store %place, @function`.
return;
}
if (!Value->hasName()) {
return;
}
StringRef Demangled = CallDemangle(Value->getName());
if (Demangled.empty()) {
return;
}
OS << "; " << Name << " " << Demangled << "\n";
}
};
} // namespace
extern "C" LLVMRustResult LLVMRustPrintModule(LLVMModuleRef M, const char *Path,
DemangleFn Demangle) {
std::string ErrorInfo;
std::error_code EC;
auto OS = raw_fd_ostream(Path, EC, sys::fs::OF_None);
if (EC)
ErrorInfo = EC.message();
if (ErrorInfo != "") {
LLVMRustSetLastError(ErrorInfo.c_str());
return LLVMRustResult::Failure;
}
auto AAW = RustAssemblyAnnotationWriter(Demangle);
auto FOS = formatted_raw_ostream(OS);
unwrap(M)->print(FOS, &AAW);
return LLVMRustResult::Success;
}
extern "C" void LLVMRustPrintPasses() {
PassBuilder PB;
PB.printPassNames(outs());
}
extern "C" void LLVMRustRunRestrictionPass(LLVMModuleRef M, char **Symbols,
size_t Len) {
auto PreserveFunctions = [=](const GlobalValue &GV) {
// Preserve LLVM-injected, ASAN-related symbols.
// See also https://github.com/rust-lang/rust/issues/113404.
if (GV.getName() == "___asan_globals_registered") {
return true;
}
// Preserve symbols exported from Rust modules.
for (size_t I = 0; I < Len; I++) {
if (GV.getName() == Symbols[I]) {
return true;
}
}
return false;
};
internalizeModule(*unwrap(M), PreserveFunctions);
}
extern "C" void
LLVMRustSetDataLayoutFromTargetMachine(LLVMModuleRef Module,
LLVMTargetMachineRef TMR) {
TargetMachine *Target = unwrap(TMR);
unwrap(Module)->setDataLayout(Target->createDataLayout());
}
extern "C" void LLVMRustSetModulePICLevel(LLVMModuleRef M) {
unwrap(M)->setPICLevel(PICLevel::Level::BigPIC);
}
extern "C" void LLVMRustSetModulePIELevel(LLVMModuleRef M) {
unwrap(M)->setPIELevel(PIELevel::Level::Large);
}
extern "C" void LLVMRustSetModuleCodeModel(LLVMModuleRef M,
LLVMRustCodeModel Model) {
auto CM = fromRust(Model);
if (!CM)
return;
unwrap(M)->setCodeModel(*CM);
}
// Here you'll find an implementation of ThinLTO as used by the Rust compiler
// right now. This ThinLTO support is only enabled on "recent ish" versions of
// LLVM, and otherwise it's just blanket rejected from other compilers.
//
// Most of this implementation is straight copied from LLVM. At the time of
// this writing it wasn't *quite* suitable to reuse more code from upstream
// for our purposes, but we should strive to upstream this support once it's
// ready to go! I figure we may want a bit of testing locally first before
// sending this upstream to LLVM. I hear though they're quite eager to receive
// feedback like this!
//
// If you're reading this code and wondering "what in the world" or you're
// working "good lord by LLVM upgrade is *still* failing due to these bindings"
// then fear not! (ok maybe fear a little). All code here is mostly based
// on `lib/LTO/ThinLTOCodeGenerator.cpp` in LLVM.
//
// You'll find that the general layout here roughly corresponds to the `run`
// method in that file as well as `ProcessThinLTOModule`. Functions are
// specifically commented below as well, but if you're updating this code
// or otherwise trying to understand it, the LLVM source will be useful in
// interpreting the mysteries within.
//
// Otherwise I'll apologize in advance, it probably requires a relatively
// significant investment on your part to "truly understand" what's going on
// here. Not saying I do myself, but it took me awhile staring at LLVM's source
// and various online resources about ThinLTO to make heads or tails of all
// this.
// This is a shared data structure which *must* be threadsafe to share
// read-only amongst threads. This also corresponds basically to the arguments
// of the `ProcessThinLTOModule` function in the LLVM source.
struct LLVMRustThinLTOData {
// The combined index that is the global analysis over all modules we're
// performing ThinLTO for. This is mostly managed by LLVM.
ModuleSummaryIndex Index;
// All modules we may look at, stored as in-memory serialized versions. This
// is later used when inlining to ensure we can extract any module to inline
// from.
StringMap<MemoryBufferRef> ModuleMap;
// A set that we manage of everything we *don't* want internalized. Note that
// this includes all transitive references right now as well, but it may not
// always!
DenseSet<GlobalValue::GUID> GUIDPreservedSymbols;
// Not 100% sure what these are, but they impact what's internalized and
// what's inlined across modules, I believe.
#if LLVM_VERSION_GE(20, 0)
FunctionImporter::ImportListsTy ImportLists;
#else
DenseMap<StringRef, FunctionImporter::ImportMapTy> ImportLists;
#endif
DenseMap<StringRef, FunctionImporter::ExportSetTy> ExportLists;
DenseMap<StringRef, GVSummaryMapTy> ModuleToDefinedGVSummaries;
StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
LLVMRustThinLTOData() : Index(/* HaveGVs = */ false) {}
};
// Just an argument to the `LLVMRustCreateThinLTOData` function below.
struct LLVMRustThinLTOModule {
const char *identifier;
const char *data;
size_t len;
};
// This is copied from `lib/LTO/ThinLTOCodeGenerator.cpp`, not sure what it
// does.
static const GlobalValueSummary *
getFirstDefinitionForLinker(const GlobalValueSummaryList &GVSummaryList) {
auto StrongDefForLinker = llvm::find_if(
GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) {
auto Linkage = Summary->linkage();
return !GlobalValue::isAvailableExternallyLinkage(Linkage) &&
!GlobalValue::isWeakForLinker(Linkage);
});
if (StrongDefForLinker != GVSummaryList.end())
return StrongDefForLinker->get();
auto FirstDefForLinker = llvm::find_if(
GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) {
auto Linkage = Summary->linkage();
return !GlobalValue::isAvailableExternallyLinkage(Linkage);
});
if (FirstDefForLinker == GVSummaryList.end())
return nullptr;
return FirstDefForLinker->get();
}
// The main entry point for creating the global ThinLTO analysis. The structure
// here is basically the same as before threads are spawned in the `run`
// function of `lib/LTO/ThinLTOCodeGenerator.cpp`.
extern "C" LLVMRustThinLTOData *
LLVMRustCreateThinLTOData(LLVMRustThinLTOModule *modules, size_t num_modules,
const char **preserved_symbols, size_t num_symbols) {
auto Ret = std::make_unique<LLVMRustThinLTOData>();
// Load each module's summary and merge it into one combined index
for (size_t i = 0; i < num_modules; i++) {
auto module = &modules[i];
auto buffer = StringRef(module->data, module->len);
auto mem_buffer = MemoryBufferRef(buffer, module->identifier);
Ret->ModuleMap[module->identifier] = mem_buffer;
if (Error Err = readModuleSummaryIndex(mem_buffer, Ret->Index)) {
LLVMRustSetLastError(toString(std::move(Err)).c_str());
return nullptr;
}
}
// Collect for each module the list of function it defines (GUID -> Summary)
Ret->Index.collectDefinedGVSummariesPerModule(
Ret->ModuleToDefinedGVSummaries);
// Convert the preserved symbols set from string to GUID, this is then needed
// for internalization.
for (size_t i = 0; i < num_symbols; i++) {
auto GUID = GlobalValue::getGUID(preserved_symbols[i]);
Ret->GUIDPreservedSymbols.insert(GUID);
}
// Collect the import/export lists for all modules from the call-graph in the
// combined index
//
// This is copied from `lib/LTO/ThinLTOCodeGenerator.cpp`
auto deadIsPrevailing = [&](GlobalValue::GUID G) {
return PrevailingType::Unknown;
};
// We don't have a complete picture in our use of ThinLTO, just our immediate
// crate, so we need `ImportEnabled = false` to limit internalization.
// Otherwise, we sometimes lose `static` values -- see #60184.
computeDeadSymbolsWithConstProp(Ret->Index, Ret->GUIDPreservedSymbols,
deadIsPrevailing,
/* ImportEnabled = */ false);
// Resolve LinkOnce/Weak symbols, this has to be computed early be cause it
// impacts the caching.
//
// This is copied from `lib/LTO/ThinLTOCodeGenerator.cpp` with some of this
// being lifted from `lib/LTO/LTO.cpp` as well
DenseMap<GlobalValue::GUID, const GlobalValueSummary *> PrevailingCopy;
for (auto &I : Ret->Index) {
if (I.second.SummaryList.size() > 1)
PrevailingCopy[I.first] =
getFirstDefinitionForLinker(I.second.SummaryList);
}
auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) {
const auto &Prevailing = PrevailingCopy.find(GUID);
if (Prevailing == PrevailingCopy.end())
return true;
return Prevailing->second == S;
};
ComputeCrossModuleImport(Ret->Index, Ret->ModuleToDefinedGVSummaries,
isPrevailing, Ret->ImportLists, Ret->ExportLists);
auto recordNewLinkage = [&](StringRef ModuleIdentifier,
GlobalValue::GUID GUID,
GlobalValue::LinkageTypes NewLinkage) {
Ret->ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
};
// Uses FromPrevailing visibility scheme which works for many binary
// formats. We probably could and should use ELF visibility scheme for many of
// our targets, however.
lto::Config conf;
thinLTOResolvePrevailingInIndex(conf, Ret->Index, isPrevailing,
recordNewLinkage, Ret->GUIDPreservedSymbols);
// Here we calculate an `ExportedGUIDs` set for use in the `isExported`
// callback below. This callback below will dictate the linkage for all
// summaries in the index, and we basically just only want to ensure that dead
// symbols are internalized. Otherwise everything that's already external
// linkage will stay as external, and internal will stay as internal.
std::set<GlobalValue::GUID> ExportedGUIDs;
for (auto &List : Ret->Index) {
for (auto &GVS : List.second.SummaryList) {
if (GlobalValue::isLocalLinkage(GVS->linkage()))
continue;
auto GUID = GVS->getOriginalName();
if (GVS->flags().Live)
ExportedGUIDs.insert(GUID);
}
}
auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) {
const auto &ExportList = Ret->ExportLists.find(ModuleIdentifier);
return (ExportList != Ret->ExportLists.end() &&
ExportList->second.count(VI)) ||
ExportedGUIDs.count(VI.getGUID());
};
thinLTOInternalizeAndPromoteInIndex(Ret->Index, isExported, isPrevailing);
return Ret.release();
}
extern "C" void LLVMRustFreeThinLTOData(LLVMRustThinLTOData *Data) {
delete Data;
}
// Below are the various passes that happen *per module* when doing ThinLTO.
//
// In other words, these are the functions that are all run concurrently
// with one another, one per module. The passes here correspond to the analysis
// passes in `lib/LTO/ThinLTOCodeGenerator.cpp`, currently found in the
// `ProcessThinLTOModule` function. Here they're split up into separate steps
// so rustc can save off the intermediate bytecode between each step.
static bool clearDSOLocalOnDeclarations(Module &Mod, TargetMachine &TM) {
// When linking an ELF shared object, dso_local should be dropped. We
// conservatively do this for -fpic.
bool ClearDSOLocalOnDeclarations = TM.getTargetTriple().isOSBinFormatELF() &&
TM.getRelocationModel() != Reloc::Static &&
Mod.getPIELevel() == PIELevel::Default;
return ClearDSOLocalOnDeclarations;
}
extern "C" void LLVMRustPrepareThinLTORename(const LLVMRustThinLTOData *Data,
LLVMModuleRef M,
LLVMTargetMachineRef TM) {
Module &Mod = *unwrap(M);
TargetMachine &Target = *unwrap(TM);
bool ClearDSOLocal = clearDSOLocalOnDeclarations(Mod, Target);
renameModuleForThinLTO(Mod, Data->Index, ClearDSOLocal);
}
extern "C" bool
LLVMRustPrepareThinLTOResolveWeak(const LLVMRustThinLTOData *Data,
LLVMModuleRef M) {
Module &Mod = *unwrap(M);
const auto &DefinedGlobals =
Data->ModuleToDefinedGVSummaries.lookup(Mod.getModuleIdentifier());
thinLTOFinalizeInModule(Mod, DefinedGlobals, /*PropagateAttrs=*/true);
return true;
}
extern "C" bool
LLVMRustPrepareThinLTOInternalize(const LLVMRustThinLTOData *Data,
LLVMModuleRef M) {
Module &Mod = *unwrap(M);
const auto &DefinedGlobals =
Data->ModuleToDefinedGVSummaries.lookup(Mod.getModuleIdentifier());
thinLTOInternalizeModule(Mod, DefinedGlobals);
return true;
}
extern "C" bool LLVMRustPrepareThinLTOImport(const LLVMRustThinLTOData *Data,
LLVMModuleRef M,
LLVMTargetMachineRef TM) {
Module &Mod = *unwrap(M);
TargetMachine &Target = *unwrap(TM);
const auto &ImportList = Data->ImportLists.lookup(Mod.getModuleIdentifier());
auto Loader = [&](StringRef Identifier) {
const auto &Memory = Data->ModuleMap.lookup(Identifier);
auto &Context = Mod.getContext();
auto MOrErr = getLazyBitcodeModule(Memory, Context, true, true);
if (!MOrErr)
return MOrErr;
// The rest of this closure is a workaround for
// https://bugs.llvm.org/show_bug.cgi?id=38184 where during ThinLTO imports
// we accidentally import wasm custom sections into different modules,
// duplicating them by in the final output artifact.
//
// The issue is worked around here by manually removing the
// `wasm.custom_sections` named metadata node from any imported module. This
// we know isn't used by any optimization pass so there's no need for it to
// be imported.
//
// Note that the metadata is currently lazily loaded, so we materialize it
// here before looking up if there's metadata inside. The `FunctionImporter`
// will immediately materialize metadata anyway after an import, so this
// shouldn't be a perf hit.
if (Error Err = (*MOrErr)->materializeMetadata()) {
Expected<std::unique_ptr<Module>> Ret(std::move(Err));
return Ret;
}
auto *WasmCustomSections =
(*MOrErr)->getNamedMetadata("wasm.custom_sections");
if (WasmCustomSections)
WasmCustomSections->eraseFromParent();
// `llvm.ident` named metadata also gets duplicated.
auto *llvmIdent = (*MOrErr)->getNamedMetadata("llvm.ident");
if (llvmIdent)
llvmIdent->eraseFromParent();
return MOrErr;
};
bool ClearDSOLocal = clearDSOLocalOnDeclarations(Mod, Target);
auto Importer = FunctionImporter(Data->Index, Loader, ClearDSOLocal);
Expected<bool> Result = Importer.importFunctions(Mod, ImportList);
if (!Result) {
LLVMRustSetLastError(toString(Result.takeError()).c_str());
return false;
}
return true;
}
// This struct and various functions are sort of a hack right now, but the
// problem is that we've got in-memory LLVM modules after we generate and
// optimize all codegen-units for one compilation in rustc. To be compatible
// with the LTO support above we need to serialize the modules plus their
// ThinLTO summary into memory.
//
// This structure is basically an owned version of a serialize module, with
// a ThinLTO summary attached.
struct LLVMRustThinLTOBuffer {
std::string data;
std::string thin_link_data;
};
extern "C" LLVMRustThinLTOBuffer *
LLVMRustThinLTOBufferCreate(LLVMModuleRef M, bool is_thin, bool emit_summary) {
auto Ret = std::make_unique<LLVMRustThinLTOBuffer>();
{
auto OS = raw_string_ostream(Ret->data);
auto ThinLinkOS = raw_string_ostream(Ret->thin_link_data);
{
if (is_thin) {
PassBuilder PB;
LoopAnalysisManager LAM;
FunctionAnalysisManager FAM;
CGSCCAnalysisManager CGAM;
ModuleAnalysisManager MAM;
PB.registerModuleAnalyses(MAM);
PB.registerCGSCCAnalyses(CGAM);
PB.registerFunctionAnalyses(FAM);
PB.registerLoopAnalyses(LAM);
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
ModulePassManager MPM;
// We only pass ThinLinkOS to be filled in if we want the summary,
// because otherwise LLVM does extra work and may double-emit some
// errors or warnings.
MPM.addPass(
ThinLTOBitcodeWriterPass(OS, emit_summary ? &ThinLinkOS : nullptr));
MPM.run(*unwrap(M), MAM);
} else {
WriteBitcodeToFile(*unwrap(M), OS);
}
}
}
return Ret.release();
}
extern "C" void LLVMRustThinLTOBufferFree(LLVMRustThinLTOBuffer *Buffer) {
delete Buffer;
}
extern "C" const void *
LLVMRustThinLTOBufferPtr(const LLVMRustThinLTOBuffer *Buffer) {
return Buffer->data.data();
}
extern "C" size_t
LLVMRustThinLTOBufferLen(const LLVMRustThinLTOBuffer *Buffer) {
return Buffer->data.length();
}
extern "C" const void *
LLVMRustThinLTOBufferThinLinkDataPtr(const LLVMRustThinLTOBuffer *Buffer) {
return Buffer->thin_link_data.data();
}
extern "C" size_t
LLVMRustThinLTOBufferThinLinkDataLen(const LLVMRustThinLTOBuffer *Buffer) {
return Buffer->thin_link_data.length();
}
// This is what we used to parse upstream bitcode for actual ThinLTO
// processing. We'll call this once per module optimized through ThinLTO, and
// it'll be called concurrently on many threads.
extern "C" LLVMModuleRef LLVMRustParseBitcodeForLTO(LLVMContextRef Context,
const char *data,
size_t len,
const char *identifier) {
auto Data = StringRef(data, len);
auto Buffer = MemoryBufferRef(Data, identifier);
unwrap(Context)->enableDebugTypeODRUniquing();
Expected<std::unique_ptr<Module>> SrcOrError =
parseBitcodeFile(Buffer, *unwrap(Context));
if (!SrcOrError) {
LLVMRustSetLastError(toString(SrcOrError.takeError()).c_str());
return nullptr;
}
return wrap(std::move(*SrcOrError).release());
}
// Find a section of an object file by name. Fail if the section is missing or
// empty.
extern "C" const char *LLVMRustGetSliceFromObjectDataByName(const char *data,
size_t len,
const char *name,
size_t name_len,
size_t *out_len) {
*out_len = 0;
auto Name = StringRef(name, name_len);
auto Data = StringRef(data, len);
auto Buffer = MemoryBufferRef(Data, ""); // The id is unused.
file_magic Type = identify_magic(Buffer.getBuffer());
Expected<std::unique_ptr<object::ObjectFile>> ObjFileOrError =
object::ObjectFile::createObjectFile(Buffer, Type);
if (!ObjFileOrError) {
LLVMRustSetLastError(toString(ObjFileOrError.takeError()).c_str());
return nullptr;
}
for (const object::SectionRef &Sec : (*ObjFileOrError)->sections()) {
Expected<StringRef> SecName = Sec.getName();
if (SecName && *SecName == Name) {
Expected<StringRef> SectionOrError = Sec.getContents();
if (!SectionOrError) {
LLVMRustSetLastError(toString(SectionOrError.takeError()).c_str());
return nullptr;
}
*out_len = SectionOrError->size();
return SectionOrError->data();
}
}
LLVMRustSetLastError("could not find requested section");
return nullptr;
}
// Computes the LTO cache key for the provided 'ModId' in the given 'Data',
// storing the result in 'KeyOut'.
// Currently, this cache key is a SHA-1 hash of anything that could affect
// the result of optimizing this module (e.g. module imports, exports, liveness
// of access globals, etc).
// The precise details are determined by LLVM in `computeLTOCacheKey`, which is
// used during the normal linker-plugin incremental thin-LTO process.
extern "C" void LLVMRustComputeLTOCacheKey(RustStringRef KeyOut,
const char *ModId,
LLVMRustThinLTOData *Data) {
SmallString<40> Key;
llvm::lto::Config conf;
const auto &ImportList = Data->ImportLists.lookup(ModId);
const auto &ExportList = Data->ExportLists.lookup(ModId);
const auto &ResolvedODR = Data->ResolvedODR.lookup(ModId);
const auto &DefinedGlobals = Data->ModuleToDefinedGVSummaries.lookup(ModId);
#if LLVM_VERSION_GE(20, 0)
DenseSet<GlobalValue::GUID> CfiFunctionDefs;
DenseSet<GlobalValue::GUID> CfiFunctionDecls;
#else
std::set<GlobalValue::GUID> CfiFunctionDefs;
std::set<GlobalValue::GUID> CfiFunctionDecls;
#endif
// Based on the 'InProcessThinBackend' constructor in LLVM
for (auto &Name : Data->Index.cfiFunctionDefs())
CfiFunctionDefs.insert(
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
for (auto &Name : Data->Index.cfiFunctionDecls())
CfiFunctionDecls.insert(
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
#if LLVM_VERSION_GE(20, 0)
Key = llvm::computeLTOCacheKey(conf, Data->Index, ModId, ImportList,
ExportList, ResolvedODR, DefinedGlobals,
CfiFunctionDefs, CfiFunctionDecls);
#else
llvm::computeLTOCacheKey(Key, conf, Data->Index, ModId, ImportList,
ExportList, ResolvedODR, DefinedGlobals,
CfiFunctionDefs, CfiFunctionDecls);
#endif
auto OS = RawRustStringOstream(KeyOut);
OS << Key.str();
}
|