1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
use std::cell::LazyCell;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::SeqCst;
use std::sync::{LazyLock, Mutex, OnceLock};
use std::{panic, thread};
fn spawn_and_wait<R: Send + 'static>(f: impl FnOnce() -> R + Send + 'static) -> R {
thread::spawn(f).join().unwrap()
}
#[test]
fn lazy_default() {
static CALLED: AtomicUsize = AtomicUsize::new(0);
struct Foo(u8);
impl Default for Foo {
fn default() -> Self {
CALLED.fetch_add(1, SeqCst);
Foo(42)
}
}
let lazy: LazyCell<Mutex<Foo>> = <_>::default();
assert_eq!(CALLED.load(SeqCst), 0);
assert_eq!(lazy.lock().unwrap().0, 42);
assert_eq!(CALLED.load(SeqCst), 1);
lazy.lock().unwrap().0 = 21;
assert_eq!(lazy.lock().unwrap().0, 21);
assert_eq!(CALLED.load(SeqCst), 1);
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn lazy_poisoning() {
let x: LazyCell<String> = LazyCell::new(|| panic!("kaboom"));
for _ in 0..2 {
let res = panic::catch_unwind(panic::AssertUnwindSafe(|| x.len()));
assert!(res.is_err());
}
}
#[test]
#[cfg_attr(any(target_os = "emscripten", target_os = "wasi"), ignore)] // no threads
fn sync_lazy_new() {
static CALLED: AtomicUsize = AtomicUsize::new(0);
static SYNC_LAZY: LazyLock<i32> = LazyLock::new(|| {
CALLED.fetch_add(1, SeqCst);
92
});
assert_eq!(CALLED.load(SeqCst), 0);
spawn_and_wait(|| {
let y = *SYNC_LAZY - 30;
assert_eq!(y, 62);
assert_eq!(CALLED.load(SeqCst), 1);
});
let y = *SYNC_LAZY - 30;
assert_eq!(y, 62);
assert_eq!(CALLED.load(SeqCst), 1);
}
#[test]
fn sync_lazy_default() {
static CALLED: AtomicUsize = AtomicUsize::new(0);
struct Foo(u8);
impl Default for Foo {
fn default() -> Self {
CALLED.fetch_add(1, SeqCst);
Foo(42)
}
}
let lazy: LazyLock<Mutex<Foo>> = <_>::default();
assert_eq!(CALLED.load(SeqCst), 0);
assert_eq!(lazy.lock().unwrap().0, 42);
assert_eq!(CALLED.load(SeqCst), 1);
lazy.lock().unwrap().0 = 21;
assert_eq!(lazy.lock().unwrap().0, 21);
assert_eq!(CALLED.load(SeqCst), 1);
}
#[test]
#[cfg_attr(any(target_os = "emscripten", target_os = "wasi"), ignore)] // no threads
fn static_sync_lazy() {
static XS: LazyLock<Vec<i32>> = LazyLock::new(|| {
let mut xs = Vec::new();
xs.push(1);
xs.push(2);
xs.push(3);
xs
});
spawn_and_wait(|| {
assert_eq!(&*XS, &vec![1, 2, 3]);
});
assert_eq!(&*XS, &vec![1, 2, 3]);
}
#[test]
fn static_sync_lazy_via_fn() {
fn xs() -> &'static Vec<i32> {
static XS: OnceLock<Vec<i32>> = OnceLock::new();
XS.get_or_init(|| {
let mut xs = Vec::new();
xs.push(1);
xs.push(2);
xs.push(3);
xs
})
}
assert_eq!(xs(), &vec![1, 2, 3]);
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn sync_lazy_poisoning() {
let x: LazyLock<String> = LazyLock::new(|| panic!("kaboom"));
for _ in 0..2 {
let res = panic::catch_unwind(|| x.len());
assert!(res.is_err());
}
}
// Check that we can infer `T` from closure's type.
#[test]
fn lazy_type_inference() {
let _ = LazyCell::new(|| ());
}
#[test]
fn is_sync_send() {
fn assert_traits<T: Send + Sync>() {}
assert_traits::<LazyLock<String>>();
}
#[test]
#[should_panic = "has previously been poisoned"]
fn lazy_force_mut_panic() {
let mut lazy = LazyLock::<String>::new(|| panic!());
panic::catch_unwind(panic::AssertUnwindSafe(|| {
let _ = LazyLock::force_mut(&mut lazy);
}))
.unwrap_err();
let _ = &*lazy;
}
#[test]
fn lazy_force_mut() {
let s = "abc".to_owned();
let mut lazy = LazyLock::new(move || s);
LazyLock::force_mut(&mut lazy);
let p = LazyLock::force_mut(&mut lazy);
p.clear();
LazyLock::force_mut(&mut lazy);
}
|