1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
use std::cell::{Cell, UnsafeCell};
use std::sync::atomic::{AtomicU8, Ordering};
use std::sync::{Arc, Condvar, Mutex};
use std::thread::{self, Builder, LocalKey};
use std::thread_local;
#[derive(Clone, Default)]
struct Signal(Arc<(Mutex<bool>, Condvar)>);
impl Signal {
fn notify(&self) {
let (set, cvar) = &*self.0;
*set.lock().unwrap() = true;
cvar.notify_one();
}
fn wait(&self) {
let (set, cvar) = &*self.0;
let mut set = set.lock().unwrap();
while !*set {
set = cvar.wait(set).unwrap();
}
}
}
struct NotifyOnDrop(Signal);
impl Drop for NotifyOnDrop {
fn drop(&mut self) {
let NotifyOnDrop(ref f) = *self;
f.notify();
}
}
#[test]
fn smoke_no_dtor() {
thread_local!(static FOO: Cell<i32> = Cell::new(1));
run(&FOO);
thread_local!(static FOO2: Cell<i32> = const { Cell::new(1) });
run(&FOO2);
fn run(key: &'static LocalKey<Cell<i32>>) {
key.with(|f| {
assert_eq!(f.get(), 1);
f.set(2);
});
let t = thread::spawn(move || {
key.with(|f| {
assert_eq!(f.get(), 1);
});
});
t.join().unwrap();
key.with(|f| {
assert_eq!(f.get(), 2);
});
}
}
#[test]
fn states() {
struct Foo(&'static LocalKey<Foo>);
impl Drop for Foo {
fn drop(&mut self) {
assert!(self.0.try_with(|_| ()).is_err());
}
}
thread_local!(static FOO: Foo = Foo(&FOO));
run(&FOO);
thread_local!(static FOO2: Foo = const { Foo(&FOO2) });
run(&FOO2);
fn run(foo: &'static LocalKey<Foo>) {
thread::spawn(move || {
assert!(foo.try_with(|_| ()).is_ok());
})
.join()
.unwrap();
}
}
#[test]
fn smoke_dtor() {
thread_local!(static FOO: UnsafeCell<Option<NotifyOnDrop>> = UnsafeCell::new(None));
run(&FOO);
thread_local!(static FOO2: UnsafeCell<Option<NotifyOnDrop>> = const { UnsafeCell::new(None) });
run(&FOO2);
fn run(key: &'static LocalKey<UnsafeCell<Option<NotifyOnDrop>>>) {
let signal = Signal::default();
let signal2 = signal.clone();
let t = thread::spawn(move || unsafe {
let mut signal = Some(signal2);
key.with(|f| {
*f.get() = Some(NotifyOnDrop(signal.take().unwrap()));
});
});
signal.wait();
t.join().unwrap();
}
}
#[test]
fn circular() {
// FIXME(static_mut_refs): Do not allow `static_mut_refs` lint
#![allow(static_mut_refs)]
struct S1(&'static LocalKey<UnsafeCell<Option<S1>>>, &'static LocalKey<UnsafeCell<Option<S2>>>);
struct S2(&'static LocalKey<UnsafeCell<Option<S1>>>, &'static LocalKey<UnsafeCell<Option<S2>>>);
thread_local!(static K1: UnsafeCell<Option<S1>> = UnsafeCell::new(None));
thread_local!(static K2: UnsafeCell<Option<S2>> = UnsafeCell::new(None));
thread_local!(static K3: UnsafeCell<Option<S1>> = const { UnsafeCell::new(None) });
thread_local!(static K4: UnsafeCell<Option<S2>> = const { UnsafeCell::new(None) });
static mut HITS: usize = 0;
impl Drop for S1 {
fn drop(&mut self) {
unsafe {
HITS += 1;
if self.1.try_with(|_| ()).is_err() {
assert_eq!(HITS, 3);
} else {
if HITS == 1 {
self.1.with(|s| *s.get() = Some(S2(self.0, self.1)));
} else {
assert_eq!(HITS, 3);
}
}
}
}
}
impl Drop for S2 {
fn drop(&mut self) {
unsafe {
HITS += 1;
assert!(self.0.try_with(|_| ()).is_ok());
assert_eq!(HITS, 2);
self.0.with(|s| *s.get() = Some(S1(self.0, self.1)));
}
}
}
thread::spawn(move || {
drop(S1(&K1, &K2));
})
.join()
.unwrap();
unsafe {
HITS = 0;
}
thread::spawn(move || {
drop(S1(&K3, &K4));
})
.join()
.unwrap();
}
#[test]
fn self_referential() {
struct S1(&'static LocalKey<UnsafeCell<Option<S1>>>);
thread_local!(static K1: UnsafeCell<Option<S1>> = UnsafeCell::new(None));
thread_local!(static K2: UnsafeCell<Option<S1>> = const { UnsafeCell::new(None) });
impl Drop for S1 {
fn drop(&mut self) {
assert!(self.0.try_with(|_| ()).is_err());
}
}
thread::spawn(move || unsafe {
K1.with(|s| *s.get() = Some(S1(&K1)));
})
.join()
.unwrap();
thread::spawn(move || unsafe {
K2.with(|s| *s.get() = Some(S1(&K2)));
})
.join()
.unwrap();
}
// Note that this test will deadlock if TLS destructors aren't run (this
// requires the destructor to be run to pass the test).
#[test]
fn dtors_in_dtors_in_dtors() {
struct S1(Signal);
thread_local!(static K1: UnsafeCell<Option<S1>> = UnsafeCell::new(None));
thread_local!(static K2: UnsafeCell<Option<NotifyOnDrop>> = UnsafeCell::new(None));
impl Drop for S1 {
fn drop(&mut self) {
let S1(ref signal) = *self;
unsafe {
let _ = K2.try_with(|s| *s.get() = Some(NotifyOnDrop(signal.clone())));
}
}
}
let signal = Signal::default();
let signal2 = signal.clone();
let _t = thread::spawn(move || unsafe {
let mut signal = Some(signal2);
K1.with(|s| *s.get() = Some(S1(signal.take().unwrap())));
});
signal.wait();
}
#[test]
fn dtors_in_dtors_in_dtors_const_init() {
struct S1(Signal);
thread_local!(static K1: UnsafeCell<Option<S1>> = const { UnsafeCell::new(None) });
thread_local!(static K2: UnsafeCell<Option<NotifyOnDrop>> = const { UnsafeCell::new(None) });
impl Drop for S1 {
fn drop(&mut self) {
let S1(ref signal) = *self;
unsafe {
let _ = K2.try_with(|s| *s.get() = Some(NotifyOnDrop(signal.clone())));
}
}
}
let signal = Signal::default();
let signal2 = signal.clone();
let _t = thread::spawn(move || unsafe {
let mut signal = Some(signal2);
K1.with(|s| *s.get() = Some(S1(signal.take().unwrap())));
});
signal.wait();
}
// This test tests that TLS destructors have run before the thread joins. The
// test has no false positives (meaning: if the test fails, there's actually
// an ordering problem). It may have false negatives, where the test passes but
// join is not guaranteed to be after the TLS destructors. However, false
// negatives should be exceedingly rare due to judicious use of
// thread::yield_now and running the test several times.
#[test]
fn join_orders_after_tls_destructors() {
// We emulate a synchronous MPSC rendezvous channel using only atomics and
// thread::yield_now. We can't use std::mpsc as the implementation itself
// may rely on thread locals.
//
// The basic state machine for an SPSC rendezvous channel is:
// FRESH -> THREAD1_WAITING -> MAIN_THREAD_RENDEZVOUS
// where the first transition is done by the “receiving” thread and the 2nd
// transition is done by the “sending” thread.
//
// We add an additional state `THREAD2_LAUNCHED` between `FRESH` and
// `THREAD1_WAITING` to block until all threads are actually running.
//
// A thread that joins on the “receiving” thread completion should never
// observe the channel in the `THREAD1_WAITING` state. If this does occur,
// we switch to the “poison” state `THREAD2_JOINED` and panic all around.
// (This is equivalent to “sending” from an alternate producer thread.)
//
// Relaxed memory ordering is fine because and spawn()/join() already provide all the
// synchronization we need here.
const FRESH: u8 = 0;
const THREAD2_LAUNCHED: u8 = 1;
const THREAD1_WAITING: u8 = 2;
const MAIN_THREAD_RENDEZVOUS: u8 = 3;
const THREAD2_JOINED: u8 = 4;
static SYNC_STATE: AtomicU8 = AtomicU8::new(FRESH);
for _ in 0..10 {
SYNC_STATE.store(FRESH, Ordering::Relaxed);
let jh = thread::Builder::new()
.name("thread1".into())
.spawn(move || {
struct TlDrop;
impl Drop for TlDrop {
fn drop(&mut self) {
let mut sync_state = SYNC_STATE.swap(THREAD1_WAITING, Ordering::Relaxed);
loop {
match sync_state {
THREAD2_LAUNCHED | THREAD1_WAITING => thread::yield_now(),
MAIN_THREAD_RENDEZVOUS => break,
THREAD2_JOINED => panic!(
"Thread 1 still running after thread 2 joined on thread 1"
),
v => unreachable!("sync state: {}", v),
}
sync_state = SYNC_STATE.load(Ordering::Relaxed);
}
}
}
thread_local! {
static TL_DROP: TlDrop = TlDrop;
}
TL_DROP.with(|_| {});
loop {
match SYNC_STATE.load(Ordering::Relaxed) {
FRESH => thread::yield_now(),
THREAD2_LAUNCHED => break,
v => unreachable!("sync state: {}", v),
}
}
})
.unwrap();
let jh2 = thread::Builder::new()
.name("thread2".into())
.spawn(move || {
assert_eq!(SYNC_STATE.swap(THREAD2_LAUNCHED, Ordering::Relaxed), FRESH);
jh.join().unwrap();
match SYNC_STATE.swap(THREAD2_JOINED, Ordering::Relaxed) {
MAIN_THREAD_RENDEZVOUS => return,
THREAD2_LAUNCHED | THREAD1_WAITING => {
panic!("Thread 2 running after thread 1 join before main thread rendezvous")
}
v => unreachable!("sync state: {:?}", v),
}
})
.unwrap();
loop {
match SYNC_STATE.compare_exchange(
THREAD1_WAITING,
MAIN_THREAD_RENDEZVOUS,
Ordering::Relaxed,
Ordering::Relaxed,
) {
Ok(_) => break,
Err(FRESH) => thread::yield_now(),
Err(THREAD2_LAUNCHED) => thread::yield_now(),
Err(THREAD2_JOINED) => {
panic!("Main thread rendezvous after thread 2 joined thread 1")
}
v => unreachable!("sync state: {:?}", v),
}
}
jh2.join().unwrap();
}
}
// Test that thread::current is still available in TLS destructors.
#[test]
fn thread_current_in_dtor() {
// Go through one round of TLS destruction first.
struct Defer;
impl Drop for Defer {
fn drop(&mut self) {
RETRIEVE.with(|_| {});
}
}
struct RetrieveName;
impl Drop for RetrieveName {
fn drop(&mut self) {
*NAME.lock().unwrap() = Some(thread::current().name().unwrap().to_owned());
}
}
static NAME: Mutex<Option<String>> = Mutex::new(None);
thread_local! {
static DEFER: Defer = const { Defer };
static RETRIEVE: RetrieveName = const { RetrieveName };
}
Builder::new().name("test".to_owned()).spawn(|| DEFER.with(|_| {})).unwrap().join().unwrap();
let name = NAME.lock().unwrap();
let name = name.as_ref().unwrap();
assert_eq!(name, "test");
}
|