1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
#![feature(duration_constants)]
use std::fmt::Debug;
use std::time::{Duration, Instant, SystemTime, UNIX_EPOCH};
macro_rules! assert_almost_eq {
($a:expr, $b:expr) => {{
let (a, b) = ($a, $b);
if a != b {
let (a, b) = if a > b { (a, b) } else { (b, a) };
assert!(a - Duration::from_micros(1) <= b, "{:?} is not almost equal to {:?}", a, b);
}
}};
}
#[test]
fn instant_monotonic() {
let a = Instant::now();
loop {
let b = Instant::now();
assert!(b >= a);
if b > a {
break;
}
}
}
#[test]
#[cfg(not(target_arch = "wasm32"))]
fn instant_monotonic_concurrent() -> std::thread::Result<()> {
let threads: Vec<_> = (0..8)
.map(|_| {
std::thread::spawn(|| {
let mut old = Instant::now();
let count = if cfg!(miri) { 1_000 } else { 5_000_000 };
for _ in 0..count {
let new = Instant::now();
assert!(new >= old);
old = new;
}
})
})
.collect();
for t in threads {
t.join()?;
}
Ok(())
}
#[test]
fn instant_elapsed() {
let a = Instant::now();
let _ = a.elapsed();
}
#[test]
fn instant_math() {
let a = Instant::now();
let b = Instant::now();
println!("a: {a:?}");
println!("b: {b:?}");
let dur = b.duration_since(a);
println!("dur: {dur:?}");
assert_almost_eq!(b - dur, a);
assert_almost_eq!(a + dur, b);
let second = Duration::SECOND;
assert_almost_eq!(a - second + second, a);
assert_almost_eq!(a.checked_sub(second).unwrap().checked_add(second).unwrap(), a);
// checked_add_duration will not panic on overflow
let mut maybe_t = Some(Instant::now());
let max_duration = Duration::from_secs(u64::MAX);
// in case `Instant` can store `>= now + max_duration`.
for _ in 0..2 {
maybe_t = maybe_t.and_then(|t| t.checked_add(max_duration));
}
assert_eq!(maybe_t, None);
// checked_add_duration calculates the right time and will work for another year
let year = Duration::from_secs(60 * 60 * 24 * 365);
assert_eq!(a + year, a.checked_add(year).unwrap());
}
#[test]
fn instant_math_is_associative() {
let now = Instant::now();
let offset = Duration::from_millis(5);
// Changing the order of instant math shouldn't change the results,
// especially when the expression reduces to X + identity.
assert_eq!((now + offset) - now, (now - now) + offset);
// On any platform, `Instant` should have the same resolution as `Duration` (e.g. 1 nanosecond)
// or better. Otherwise, math will be non-associative (see #91417).
let now = Instant::now();
let provided_offset = Duration::from_nanos(1);
let later = now + provided_offset;
let measured_offset = later - now;
assert_eq!(measured_offset, provided_offset);
}
#[test]
fn instant_duration_since_saturates() {
let a = Instant::now();
assert_eq!((a - Duration::SECOND).duration_since(a), Duration::ZERO);
}
#[test]
fn instant_checked_duration_since_nopanic() {
let now = Instant::now();
let earlier = now - Duration::SECOND;
let later = now + Duration::SECOND;
assert_eq!(earlier.checked_duration_since(now), None);
assert_eq!(later.checked_duration_since(now), Some(Duration::SECOND));
assert_eq!(now.checked_duration_since(now), Some(Duration::ZERO));
}
#[test]
fn instant_saturating_duration_since_nopanic() {
let a = Instant::now();
#[allow(deprecated, deprecated_in_future)]
let ret = (a - Duration::SECOND).saturating_duration_since(a);
assert_eq!(ret, Duration::ZERO);
}
#[test]
fn system_time_math() {
let a = SystemTime::now();
let b = SystemTime::now();
match b.duration_since(a) {
Ok(Duration::ZERO) => {
assert_almost_eq!(a, b);
}
Ok(dur) => {
assert!(b > a);
assert_almost_eq!(b - dur, a);
assert_almost_eq!(a + dur, b);
}
Err(dur) => {
let dur = dur.duration();
assert!(a > b);
assert_almost_eq!(b + dur, a);
assert_almost_eq!(a - dur, b);
}
}
let second = Duration::SECOND;
assert_almost_eq!(a.duration_since(a - second).unwrap(), second);
assert_almost_eq!(a.duration_since(a + second).unwrap_err().duration(), second);
assert_almost_eq!(a - second + second, a);
assert_almost_eq!(a.checked_sub(second).unwrap().checked_add(second).unwrap(), a);
let one_second_from_epoch = UNIX_EPOCH + Duration::SECOND;
let one_second_from_epoch2 =
UNIX_EPOCH + Duration::from_millis(500) + Duration::from_millis(500);
assert_eq!(one_second_from_epoch, one_second_from_epoch2);
// checked_add_duration will not panic on overflow
let mut maybe_t = Some(SystemTime::UNIX_EPOCH);
let max_duration = Duration::from_secs(u64::MAX);
// in case `SystemTime` can store `>= UNIX_EPOCH + max_duration`.
for _ in 0..2 {
maybe_t = maybe_t.and_then(|t| t.checked_add(max_duration));
}
assert_eq!(maybe_t, None);
// checked_add_duration calculates the right time and will work for another year
let year = Duration::from_secs(60 * 60 * 24 * 365);
assert_eq!(a + year, a.checked_add(year).unwrap());
}
#[test]
fn system_time_elapsed() {
let a = SystemTime::now();
drop(a.elapsed());
}
#[test]
fn since_epoch() {
let ts = SystemTime::now();
let a = ts.duration_since(UNIX_EPOCH + Duration::SECOND).unwrap();
let b = ts.duration_since(UNIX_EPOCH).unwrap();
assert!(b > a);
assert_eq!(b - a, Duration::SECOND);
let thirty_years = Duration::SECOND * 60 * 60 * 24 * 365 * 30;
// Right now for CI this test is run in an emulator, and apparently the
// aarch64 emulator's sense of time is that we're still living in the
// 70s. This is also true for riscv (also qemu)
//
// Otherwise let's assume that we're all running computers later than
// 2000.
if !cfg!(target_arch = "aarch64") && !cfg!(target_arch = "riscv64") {
assert!(a > thirty_years);
}
// let's assume that we're all running computers earlier than 2090.
// Should give us ~70 years to fix this!
let hundred_twenty_years = thirty_years * 4;
assert!(a < hundred_twenty_years);
}
#[test]
fn big_math() {
// Check that the same result occurs when adding/subtracting each duration one at a time as when
// adding/subtracting them all at once.
#[track_caller]
fn check<T: Eq + Copy + Debug>(start: Option<T>, op: impl Fn(&T, Duration) -> Option<T>) {
const DURATIONS: [Duration; 2] =
[Duration::from_secs(i64::MAX as _), Duration::from_secs(50)];
if let Some(start) = start {
assert_eq!(
op(&start, DURATIONS.into_iter().sum()),
DURATIONS.into_iter().try_fold(start, |t, d| op(&t, d))
)
}
}
check(SystemTime::UNIX_EPOCH.checked_sub(Duration::from_secs(100)), SystemTime::checked_add);
check(SystemTime::UNIX_EPOCH.checked_add(Duration::from_secs(100)), SystemTime::checked_sub);
let instant = Instant::now();
check(instant.checked_sub(Duration::from_secs(100)), Instant::checked_add);
check(instant.checked_sub(Duration::from_secs(i64::MAX as _)), Instant::checked_add);
check(instant.checked_add(Duration::from_secs(100)), Instant::checked_sub);
check(instant.checked_add(Duration::from_secs(i64::MAX as _)), Instant::checked_sub);
}
|