1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
// You can run this example from the root of the mio repo:
// cargo run --example tcp_server --features="os-poll net"
use mio::event::Event;
use mio::net::{TcpListener, TcpStream};
use mio::{Events, Interest, Poll, Registry, Token};
use std::collections::HashMap;
use std::io::{self, Read, Write};
use std::str::from_utf8;
// Setup some tokens to allow us to identify which event is for which socket.
const SERVER: Token = Token(0);
// Some data we'll send over the connection.
const DATA: &[u8] = b"Hello world!\n";
#[cfg(not(target_os = "wasi"))]
fn main() -> io::Result<()> {
env_logger::init();
// Create a poll instance.
let mut poll = Poll::new()?;
// Create storage for events.
let mut events = Events::with_capacity(128);
// Setup the TCP server socket.
let addr = "127.0.0.1:9000".parse().unwrap();
let mut server = TcpListener::bind(addr)?;
// Register the server with poll we can receive events for it.
poll.registry()
.register(&mut server, SERVER, Interest::READABLE)?;
// Map of `Token` -> `TcpStream`.
let mut connections = HashMap::new();
// Unique token for each incoming connection.
let mut unique_token = Token(SERVER.0 + 1);
println!("You can connect to the server using `nc`:");
println!(" $ nc 127.0.0.1 9000");
println!("You'll see our welcome message and anything you type will be printed here.");
loop {
if let Err(err) = poll.poll(&mut events, None) {
if interrupted(&err) {
continue;
}
return Err(err);
}
for event in events.iter() {
match event.token() {
SERVER => loop {
// Received an event for the TCP server socket, which
// indicates we can accept an connection.
let (mut connection, address) = match server.accept() {
Ok((connection, address)) => (connection, address),
Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
// If we get a `WouldBlock` error we know our
// listener has no more incoming connections queued,
// so we can return to polling and wait for some
// more.
break;
}
Err(e) => {
// If it was any other kind of error, something went
// wrong and we terminate with an error.
return Err(e);
}
};
println!("Accepted connection from: {}", address);
let token = next(&mut unique_token);
poll.registry().register(
&mut connection,
token,
Interest::READABLE.add(Interest::WRITABLE),
)?;
connections.insert(token, connection);
},
token => {
// Maybe received an event for a TCP connection.
let done = if let Some(connection) = connections.get_mut(&token) {
handle_connection_event(poll.registry(), connection, event)?
} else {
// Sporadic events happen, we can safely ignore them.
false
};
if done {
if let Some(mut connection) = connections.remove(&token) {
poll.registry().deregister(&mut connection)?;
}
}
}
}
}
}
}
fn next(current: &mut Token) -> Token {
let next = current.0;
current.0 += 1;
Token(next)
}
/// Returns `true` if the connection is done.
fn handle_connection_event(
registry: &Registry,
connection: &mut TcpStream,
event: &Event,
) -> io::Result<bool> {
if event.is_writable() {
// We can (maybe) write to the connection.
match connection.write(DATA) {
// We want to write the entire `DATA` buffer in a single go. If we
// write less we'll return a short write error (same as
// `io::Write::write_all` does).
Ok(n) if n < DATA.len() => return Err(io::ErrorKind::WriteZero.into()),
Ok(_) => {
// After we've written something we'll reregister the connection
// to only respond to readable events.
registry.reregister(connection, event.token(), Interest::READABLE)?
}
// Would block "errors" are the OS's way of saying that the
// connection is not actually ready to perform this I/O operation.
Err(ref err) if would_block(err) => {}
// Got interrupted (how rude!), we'll try again.
Err(ref err) if interrupted(err) => {
return handle_connection_event(registry, connection, event)
}
// Other errors we'll consider fatal.
Err(err) => return Err(err),
}
}
if event.is_readable() {
let mut connection_closed = false;
let mut received_data = vec![0; 4096];
let mut bytes_read = 0;
// We can (maybe) read from the connection.
loop {
match connection.read(&mut received_data[bytes_read..]) {
Ok(0) => {
// Reading 0 bytes means the other side has closed the
// connection or is done writing, then so are we.
connection_closed = true;
break;
}
Ok(n) => {
bytes_read += n;
if bytes_read == received_data.len() {
received_data.resize(received_data.len() + 1024, 0);
}
}
// Would block "errors" are the OS's way of saying that the
// connection is not actually ready to perform this I/O operation.
Err(ref err) if would_block(err) => break,
Err(ref err) if interrupted(err) => continue,
// Other errors we'll consider fatal.
Err(err) => return Err(err),
}
}
if bytes_read != 0 {
let received_data = &received_data[..bytes_read];
if let Ok(str_buf) = from_utf8(received_data) {
println!("Received data: {}", str_buf.trim_end());
} else {
println!("Received (none UTF-8) data: {:?}", received_data);
}
}
if connection_closed {
println!("Connection closed");
return Ok(true);
}
}
Ok(false)
}
fn would_block(err: &io::Error) -> bool {
err.kind() == io::ErrorKind::WouldBlock
}
fn interrupted(err: &io::Error) -> bool {
err.kind() == io::ErrorKind::Interrupted
}
#[cfg(target_os = "wasi")]
fn main() {
panic!("can't bind to an address with wasi")
}
|