1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
/*
* Cryptography functions
*
* Copyright IBM Corp. 2022
*
* s390-tools is free software; you can redistribute it and/or modify
* it under the terms of the MIT license. See LICENSE for details.
*/
/* Must be included before any other header */
#include "config.h"
#include <openssl/bio.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/kdf.h>
#include "lib/zt_common.h"
#include "libpv/crypto.h"
#include "libpv/glib-helper.h"
char *pv_get_openssl_errors(void)
{
char *ret;
char *buf;
BIO *bio;
long len;
bio = BIO_new(BIO_s_mem());
ERR_print_errors(bio);
len = BIO_get_mem_data(bio, &buf);
if (len <= 0 || !buf)
ret = g_strdup("Cannot receive OpenSSL error message.");
else
ret = g_strndup(buf, (size_t)len);
BIO_free(bio);
return ret;
}
int pv_BIO_reset(BIO *b)
{
int rc = BIO_reset(b);
if (rc != 1 && !(BIO_method_type(b) == BIO_TYPE_FILE && rc == 0))
return -1;
return 1;
}
static int64_t pv_gcm_encrypt_decrypt(GBytes *input, GBytes *aad, const PvCipherParms *parms,
GBytes **output, GBytes **tagp, enum PvCryptoMode mode,
GError **error)
{
const uint8_t *in_data, *aad_data = NULL, *iv_data, *key_data;
size_t in_size, aad_size = 0, iv_size, key_size, out_size;
const EVP_CIPHER *cipher = parms->cipher;
const size_t tag_size = parms->tag_size;
gboolean encrypt = mode == PV_ENCRYPT;
g_autoptr(EVP_CIPHER_CTX) ctx = NULL;
g_autofree uint8_t *out_data = NULL;
g_autofree uint8_t *tag_data = NULL;
const GBytes *key = parms->key;
const GBytes *iv = parms->iv;
int cipher_block_size;
int64_t ret = -1;
int len = -1;
GBytes *tag;
g_assert(tagp);
g_assert(cipher);
g_assert(key);
g_assert(iv);
tag = *tagp;
in_data = g_bytes_get_data((GBytes *)input, &in_size);
if (aad)
aad_data = g_bytes_get_data((GBytes *)aad, &aad_size);
iv_data = g_bytes_get_data((GBytes *)iv, &iv_size);
key_data = g_bytes_get_data((GBytes *)key, &key_size);
out_size = in_size;
cipher_block_size = EVP_CIPHER_block_size(cipher);
/* Checks for later casts */
g_assert(aad_size <= INT_MAX);
g_assert(in_size <= INT_MAX);
g_assert(iv_size <= INT_MAX);
g_assert(cipher_block_size > 0);
ctx = EVP_CIPHER_CTX_new();
if (!ctx)
g_abort();
if (tag_size == 0 || (tag_size % (size_t)cipher_block_size != 0)) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_INTERNAL,
"Passed tag size is incorrect");
return -1;
}
/* Has the passed key the correct size? */
if (EVP_CIPHER_key_length(cipher) != (int)key_size) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_INTERNAL,
"Passed key has incorrect size: %ld != %d", key_size,
EVP_CIPHER_key_length(cipher));
return -1;
}
/* First, set the cipher algorithm so we can verify our key/IV lengths
*/
if (EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, encrypt) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_INTERNAL,
"EVP_CIPHER_CTX_new failed");
return -1;
}
/* Set IV length */
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, (int)iv_size, NULL) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_INTERNAL,
"EVP_CIPHER_CTX_ex failed");
return -1;
}
/* Initialise key and IV */
if (EVP_CipherInit_ex(ctx, NULL, NULL, key_data, iv_data, encrypt) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_INTERNAL,
"EVP_CipherInit_ex failed");
return -1;
}
/* Allocate output data */
out_data = g_malloc0(out_size);
if (encrypt)
tag_data = g_malloc0(tag_size);
if (aad_size > 0) {
/* Provide any AAD data */
if (EVP_CipherUpdate(ctx, NULL, &len, aad_data, (int)aad_size) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_INTERNAL,
"EVP_CipherUpdate failed");
return -1;
}
g_assert(len == (int)aad_size);
}
/* Provide data to be en/decrypted */
if (EVP_CipherUpdate(ctx, out_data, &len, in_data, (int)in_size) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_INTERNAL,
"EVP_CipherUpdate failed");
return -1;
}
ret = len;
if (!encrypt) {
const uint8_t *tmp_tag_data = NULL;
size_t tmp_tag_size = 0;
if (tag)
tmp_tag_data = g_bytes_get_data(tag, &tmp_tag_size);
if (tag_size != tmp_tag_size) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_INTERNAL,
"Getting the GCM tag failed");
return -1;
}
/* Set expected tag value */
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, (int)tmp_tag_size,
(uint8_t *)tmp_tag_data) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_INTERNAL,
"Setting the GCM tag failed");
return -1;
}
}
/* Finalize the en/decryption */
if (EVP_CipherFinal_ex(ctx, (uint8_t *)out_data + len, &len) != 1) {
if (encrypt)
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_INTERNAL,
"Encrypting failed (EVP_CipherFinal_ex)");
else
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_NO_MATCH_TAG,
"Verifying the GCM tag failed");
return -1;
}
ret += len;
if (encrypt) {
/* Get the tag */
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, (int)tag_size, tag_data) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_INTERNAL,
"Getting the GCM tag failed");
return -1;
}
g_assert(!*tagp);
*tagp = g_bytes_new_take(g_steal_pointer(&tag_data), tag_size);
}
g_assert(ret == (int)out_size);
g_assert(out_size == in_size);
g_assert(!*output);
*output = pv_sec_gbytes_new_take(g_steal_pointer(&out_data), out_size);
return ret;
}
int64_t pv_gcm_encrypt(GBytes *plain, GBytes *aad, const PvCipherParms *parms, GBytes **cipher,
GBytes **tag, GError **error)
{
pv_wrapped_g_assert(plain);
pv_wrapped_g_assert(parms);
pv_wrapped_g_assert(cipher);
pv_wrapped_g_assert(tag);
return pv_gcm_encrypt_decrypt(plain, aad, parms, cipher, tag, PV_ENCRYPT, error);
}
int64_t pv_gcm_decrypt(GBytes *cipher, GBytes *aad, GBytes *tag, const PvCipherParms *parms,
GBytes **plain, GError **error)
{
pv_wrapped_g_assert(cipher);
pv_wrapped_g_assert(tag);
pv_wrapped_g_assert(parms);
pv_wrapped_g_assert(plain);
return pv_gcm_encrypt_decrypt(cipher, aad, parms, plain, &tag, PV_DECRYPT, error);
}
GBytes *pv_hkdf_extract_and_expand(size_t derived_key_len, GBytes *key, GBytes *salt, GBytes *info,
const EVP_MD *md, GError **error)
{
const unsigned char *salt_data, *key_data, *info_data;
g_autoptr(EVP_PKEY_CTX) ctx = NULL;
size_t salt_len, key_len, info_len;
g_autofree unsigned char *derived_key = NULL;
g_assert(derived_key_len > 0);
pv_wrapped_g_assert(key);
pv_wrapped_g_assert(salt);
pv_wrapped_g_assert(info);
pv_wrapped_g_assert(md);
ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
if (!ctx)
g_abort();
if (EVP_PKEY_derive_init(ctx) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_HKDF_FAIL,
"FAILED to derive key via HKDF");
return NULL;
}
if (EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_HKDF_FAIL,
"FAILED to derive key via HKDF");
return NULL;
}
if (EVP_PKEY_CTX_set_hkdf_md(ctx, md) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_HKDF_FAIL,
"FAILED to derive key via HKDF");
return NULL;
}
salt_data = g_bytes_get_data(salt, &salt_len);
if (salt_len > INT_MAX) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_HKDF_FAIL,
"FAILED to derive key via HKDF");
return NULL;
}
if (EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt_data, (int)salt_len) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_HKDF_FAIL,
"FAILED to derive key via HKDF");
return NULL;
}
key_data = g_bytes_get_data(key, &key_len);
if (key_len > INT_MAX) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_HKDF_FAIL,
"FAILED to derive key via HKDF");
return NULL;
}
if (EVP_PKEY_CTX_set1_hkdf_key(ctx, key_data, (int)key_len) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_HKDF_FAIL,
"FAILED to derive key via HKDF");
return NULL;
}
info_data = g_bytes_get_data(info, &info_len);
if (info_len > INT_MAX) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_HKDF_FAIL,
"FAILED to derive key via HKDF");
return NULL;
}
if (EVP_PKEY_CTX_add1_hkdf_info(ctx, (unsigned char *)info_data, (int)info_len) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_HKDF_FAIL,
"FAILED to derive key via HKDF");
return NULL;
}
derived_key = g_malloc0(derived_key_len);
if (EVP_PKEY_derive(ctx, derived_key, &derived_key_len) != 1) {
g_set_error(error, PV_CRYPTO_ERROR, PV_CRYPTO_ERROR_HKDF_FAIL,
"FAILED to derive key via HKDF");
return NULL;
}
return pv_sec_gbytes_new_take(g_steal_pointer(&derived_key), derived_key_len);
}
GQuark pv_crypto_error_quark(void)
{
return g_quark_from_static_string("pv-crypto-error-quark");
}
|