1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
// SPDX-License-Identifier: GPL-2.0-or-later
/* SPDX-FileCopyrightText: 2004-2015 Simon Wunderlich <sw@simonwunderlich.de>
*/
#include <s3d.h>
#include <stdio.h> /* NULL, sprintf() */
#include <time.h> /* nanosleep() */
#include <math.h> /* M_PI, cos(), sin() */
#include <stdlib.h> /* malloc(), free() */
#include "example.h" /* S3DUNUSED */
static struct timespec t = {
0, 100*1000*1000
}; /* 100 mili seconds */
static int oid;
static int r;
static int wire_sphere(int slices, int stacks)
{
int x, y, i, o;
unsigned int num_v, num_l;
float *v, *n; /* vertices, normals */
float alpha, beta;
unsigned int *l; /* lines */
num_v = (stacks + 1) * slices;
num_l = stacks * slices + (stacks - 1) * slices; /* vertical + horizontal */
v = (float*)malloc(sizeof(float) * 3 * num_v);
n = (float*)malloc(sizeof(float) * 6 * num_l);
l = (unsigned int*)malloc(sizeof(unsigned int) * 3 * num_l);
i = 0;
for (x = 0; x < slices; x++) {
alpha = (x * 360.0f / slices) * (float)M_PI / 180.0f;
for (y = 0; y < (stacks + 1); y++) {
beta = ((y * 180 / slices) - 90.0f) * (float)M_PI / 180.0f;
v[i*3+0] = cosf(alpha) * cosf(beta);
v[i*3+1] = sinf(beta);
v[i*3+2] = sinf(alpha) * cosf(beta);
i++;
}
}
i = 0;
for (x = 0; x < slices; x++) {
for (y = 0; y < stacks; y++) {
if ((y != 0) && (y != stacks)) { /* no horizontal lines at the poles */
l[i*3+0] = (x * (stacks + 1)) + y;
l[i*3+1] = (((x + 1) % slices) * (stacks + 1)) + y;
l[i*3+2] = 0;
n[i*6+0] = v[ l[i*3+0] * 3 + 0];
n[i*6+1] = v[ l[i*3+0] * 3 + 1];
n[i*6+2] = v[ l[i*3+0] * 3 + 2];
n[i*6+3] = v[ l[i*3+1] * 3 + 0];
n[i*6+4] = v[ l[i*3+1] * 3 + 1];
n[i*6+5] = v[ l[i*3+1] * 3 + 2];
i++;
}
/* vertical lines */
l[i*3+0] = (x * (stacks + 1)) + y;
l[i*3+1] = (x * (stacks + 1)) + y + 1;
l[i*3+2] = 0;
n[i*6+0] = v[ l[i*3+0] * 3 + 0];
n[i*6+1] = v[ l[i*3+0] * 3 + 1];
n[i*6+2] = v[ l[i*3+0] * 3 + 2];
n[i*6+3] = v[ l[i*3+1] * 3 + 0];
n[i*6+4] = v[ l[i*3+1] * 3 + 1];
n[i*6+5] = v[ l[i*3+1] * 3 + 2];
i++;
}
}
o = s3d_new_object();
s3d_push_material(o, 0, 0, 1,
1, 0, 0,
0, 1, 0);
s3d_push_vertices(o, v, (uint16_t)num_v);
s3d_push_lines(o, l, (uint16_t)num_l);
s3d_load_line_normals(o, n, 0, (uint16_t)num_l);
free(v);
free(n);
free(l);
return o;
}
static int stop(struct s3d_evt *S3DUNUSED(evt))
{
s3d_quit();
return 0;
}
static void mainloop(void)
{
r = (r + 1) % 360;
s3d_rotate(oid, 0, (float)r, 0);
nanosleep(&t, NULL);
}
int main(int argc, char **argv)
{
if (!s3d_init(&argc, &argv, "wiresphere")) {
oid = wire_sphere(30, 30);
s3d_scale(oid, 10);
s3d_flags_on(oid, S3D_OF_VISIBLE | S3D_OF_SELECTABLE);
s3d_set_callback(S3D_EVENT_OBJ_CLICK, (s3d_cb)stop);
s3d_set_callback(S3D_EVENT_QUIT, (s3d_cb)stop);
s3d_mainloop(mainloop);
/* wait for some object to be clicked */
s3d_quit();
}
return 0;
}
|