File: cLP.tex

package info (click to toggle)
saclib 2.2.8-6.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,872 kB
  • sloc: ansic: 40,932; csh: 1,190; asm: 541; awk: 320; sh: 246; perl: 116; makefile: 98; sed: 48
file content (334 lines) | stat: -rw-r--r-- 13,075 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Mathematical Preliminaries}
\label{c:LP s:MP}

Let $A$ be a finite domain and let $C$ be the closure of $A$ under the
operation of finite sequence formation. Then
\begin{itemize}
\item the elements of $C$ are called {\em objects},
\item the elements of $A$ are called {\em atoms}, and
\item the elements of $C \backslash\! A$ are called {\em lists}.
\end{itemize}
Note that the atom $a$ and the list $(a)$ containing $a$ as its only
element are distinct objects. Furthermore, the set of lists also
encompasses the empty sequence, which we call the empty list.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Purpose}
\label{c:LP s:P}

Lists are the basis for nearly all \saclib\ internal representations of
elements of domains like the integers, polynomials, algebraic numbers, etc.
The \saclib\ list processing package implements the abstract concept of
lists described above.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Definitions of Terms}
\label{c:LP s:D}

\begin{description}
\item[atom]\index{atom}
  An integer \tta\ such that $-\BETA < \tta < \BETA$.
\item[list (handle)]\index{list}\index{handle!of a list}
  An integer \ttL\ such that $\BETA \leq \ttL < \BETAp$, where \BETA\ and
  \BETAp\ are positive integer constants\footnote{
    See Section \ref{c:NIW s:CGV} for more information on \BETA\ and \BETAp.
  }.
  \ttL\ is a reference to the memory location of the first cell of the
  list $L$.

  The term {\em list} is used to denote the \saclib\ internal
  representation of an element of $C \backslash\! A$ as given in Section
  \ref{c:LP s:MP}. If emphasis is on the reference to memory, the term {\em
  list handle} is used.
\item[(list) cell]\index{cell}
  The memory space used to store a (reference to a) single list element and
  bookkeeping information needed to combine several cells into a list.
\item[(list) element]\index{element!of a list}
  If $L$ is the list $(l_1, l_2, \ldots, l_n)$, then $l_1$ is its {\em
  first element}, $l_2$ is its {\em second element}, etc.
\item[empty list]\index{list!empty}\index{\NIL}
  A list containing no elements, represented by the constant \NIL.
\item[object]\index{object}
  A term denoting both atoms and lists.
\item[composition]\index{composition}
  of an object $l$ and a list $(l_1, l_2, \ldots, l_n)$ is the list $(l,
  l_1, l_2, \ldots, l_n)$.
\item[reductum]\index{reductum!of a list}
  of a list $(l_1, l_2, \ldots, l_n)$ is the list $(l_2, l_3, \ldots,
  l_n)$. The reductum of the empty list is undefined.
\item[concatenation]\index{concatenation}
  of lists $(l_1, l_2, \ldots, l_n)$ and $(m_1, m_2, \ldots, m_k)$ is
  the list $(l_1, \ldots,\\l_n, m_1, \ldots, m_k)$.
\item[inverse]\index{inverse!of a list}
  of a list $(l_1, l_2, \ldots, l_n)$ is the list $(l_n, l_{n-1}, \ldots,
  l_1)$.
\item[length]\index{length!of a list}
  of a list $(l_1,l_2,\ldots,l_n)$ is $n$. The length of the empty list is 0.
\item[extent]\index{extent}
  The number of cells used by an object. More precisely:
  \begin{itemize}
  \item
    ${\tt EXTENT}(a) = 0$ if $a$ is an atom.
  \item
    ${\tt EXTENT}(\NIL) = 0$.
  \item
    ${\tt EXTENT}(L) = 1 + {\tt EXTENT}(l_1) + {\tt EXTENT}((l_2,
    \ldots, l_n))$, where $L$ is the non-empty list $(l_1, l_2, \ldots, l_n)$.
  \end{itemize}
\item[order]\index{order!of a list}
  The depth of an object. More precisely:
  \begin{itemize}
  \item
    ${\tt ORDER}(a) = 0$ if $a$ is an atom.
  \item
    ${\tt ORDER}(\NIL) = 1$.
  \item
    ${\tt ORDER}(L) = {\tt MAX}({\tt ORDER}(l_1)+1, {\tt ORDER}((l_2, \ldots,
    l_n)))$, where $L$ is the non-empty list $(l_1, l_2, \ldots, l_n)$.
  \end{itemize}
\item[side effects]\index{side effects}
  When a function modifies the content of one or more cells of the input
  list(s), it is said to cause {\em side effects}. This is always noted
  in the function specifications.
\item[destructive]\index{destructive}
  An operation on lists causing side effects is called {\em destructive}.
\item[(unordered) set]\index{set!unordered}
  An (unordered) list of atoms.
\end{description}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Functions}
\label{c:LP s:F}

\begin{description}
\item[Constructors:] \ \
  \begin{description}
  \item[{\tt M <- COMP(a,L) 
}]\index{COMP}  Composition. {\em Prefixes an object to a list.}
  \item[{\tt M <- COMP2(a,b,L) 
}]\index{COMP2}  Composition 2. {\em Prefixes 2 objects to a list.}
  \item[{\tt M <- COMP3(a1,a2,a3,L) 
}]\index{COMP3}  Composition 3. {\em Prefixes 3 objects to a list.}
  \item[{\tt M <- COMP4(a1,a2,a3,a4,L) 
}]\index{COMP4}  Composition 4. {\em Prefixes 4 objects to a list.}
  \item[{\tt L <- LIST1(a) 
}]\index{LIST1}  List, 1 element. {\em Builds a list from one object.}
  \item[{\tt L <- LIST2(a,b) 
}]\index{LIST2}  List, 2 elements. {\em Builds a list from 2 objects.}
  \item[{\tt L <- LIST3(a1,a2,a3) 
}]\index{LIST3}  List, 3 elements. {\em Builds a list from 3 objects.}
  \item[{\tt L <- LIST4(a1,a2,a3,a4) 
}]\index{LIST4}  List, 4 elements. {\em Builds a list from 4 objects.}
  \item[{\tt L <- LIST5(a1,a2,a3,a4,a5) 
}]\index{LIST5}  List, 5 elements. {\em Builds a list from 5 objects.}
  \item[{\tt L <- LIST10(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10) 
}]\index{LIST10}  List, 10 elements. {\em Builds a list from 10 objects.}
  \end{description}

\item[Selectors:] \ \
  \begin{description}
  \item[{\tt  ADV(L; a,Lp) 
}]\index{ADV}  Advance. {\em Returns the first element and the reductum of a
  list.}
  \item[{\tt  ADV2(L; a,b,Lp) 
}]\index{ADV2}  Advance 2. {\em Returns the first 2 elements and the 2nd
  reductum of a list.}
  \item[{\tt  ADV3(L; a1,a2,a3,Lp) 
}]\index{ADV3}  Advance 3. {\em Returns the first 3 elements and the 3rd
  reductum of a list.}
  \item[{\tt  ADV4(L; a1,a2,a3,a4,Lp) 
}]\index{ADV4}  Advance 4. {\em Returns the first 4 elements and the 4th
  reductum of a list.}
  \item[{\tt  AADV(L; a,Lp) 
}]\index{AADV}  Arithmetic advance. {\em Returns the first element and the
    reductum of a non-empty list, returns 0 as the first element if the
    list is empty.}
  \item[{\tt  a <- FIRST(L) 
}]\index{FIRST}  First. {\em Returns the first element of a list.}
  \item[{\tt  FIRST2(L; a,b) 
}]\index{FIRST2} First 2. {\em Returns the first 2 elements of a list.}
  \item[{\tt  FIRST3(L; a1,a2,a3) 
}]\index{FIRST3}  First 3. {\em Returns the first 3 elements of a list.}
  \item[{\tt  FIRST4(L; a1,a2,a3,a4) 
}]\index{FIRST4}  First 4. {\em Returns the first 4 elements of a list.}
  \item[{\tt  a <- SECOND(L) 
}]\index{SECOND}  Second. {\em Returns the 2nd element of a list.}
  \item[{\tt a <- THIRD(L) 
}]\index{THIRD}  Third. {\em Returns the 3rd element of a list.}
  \item[{\tt a <- FOURTH(L) 
}]\index{FOURTH}  Fourth. {\em Returns the 4th element of a list.}
  \item[{\tt Lp <- LASTCELL(L) 
}]\index{LASTCELL}  Last cell. {\em Returns the list handle of the last cell
     of a list.}
  \item[{\tt a <- LELTI(A,i) 
}]\index{LELTI}  List element. {\em Returns the i-th element of a list.}
  \item[{\tt  Lp <- RED(L) 
}]\index{RED}  Reductum. {\em Returns the reductum of a list.}
  \item[{\tt  Lp <- RED2(L) 
}]\index{RED2}  Reductum 2. {\em Returns the 2nd reductum of a list.}
  \item[{\tt M <- RED3(L) 
}]\index{RED3}  Reductum 3. {\em Returns the 3rd reductum of a list.}
  \item[{\tt M <- RED4(L) 
}]\index{RED4}  Reductum 4. {\em Returns the 4th reductum of a list.}
  \item[{\tt B <- REDI(A,i) 
}]\index{REDI} Reductum. {\em Returns the i-th reductum of a list.}
  \end{description}

\item[Information and Predicates:] \ \
  \begin{description}
  \item[{\tt  t <- ISOBJECT(a) 
}]\index{ISOBJECT}  Test for object. {\em Tests whether the argument
    represents an object.}
  \item[{\tt  t <- ISATOM(a) 
}]\index{ISATOM}  Test for atom. {\em Tests whether the argument represents
  an atom.}
  \item[{\tt  t <- ISLIST(a) 
}]\index{ISLIST}  Test for list. {\em Tests whether the argument represents
  a list.}
  \item[{\tt  t <- ISNIL(L) 
}]\index{ISNIL}  Test for empty list. {\em Tests whether the argument
  represents the empty list.}
  \item[{\tt t <- EQUAL(a,b) 
}]\index{EQUAL}  Equal. {\em Tests whether two objects are equal.}
  \item[{\tt t <- MEMBER(a,L) 
}]\index{MEMBER}  Membership test. {\em Tests whether an object is an element of
  a list.}
  \item[{\tt i <- LSRCH(a,A) 
}]\index{LSRCH}  List search. {\em Returns the index of an object in a list.}
  \item[{\tt n <- EXTENT(a) 
}]\index{EXTENT}  Extent.
  \item[{\tt n <- LENGTH(L) 
}]\index{LENGTH}  Length.
  \item[{\tt n <- ORDER(a) 
}]\index{ORDER}  Order.
  \end{description}

\item[Concatenation:] \ \
  \begin{description}
  \item[{\tt L <- CCONC(L1,L2) 
}]\index{CCONC}  Constructive concatenation. {\em Builds a list
    $(l_1,\ldots,l_m,\\l_{m+1},\ldots,l_n)$ from lists $(l_1,\ldots,l_m)$ and
    $(l_{m+1},\ldots,l_n)$.}
  \item[{\tt L <- CONC(L1,L2) 
}]\index{CONC} Concatenation. {\em Concatenates two lists destructively.}
  \item[{\tt M <- LCONC(L) 
}]\index{LCONC}  List concatenation. {\em Concatenates the elements of a
    list of lists destructively.}
  \end{description}

\item[Inversion:] \ \
  \begin{description}
  \item[{\tt M <- CINV(L) 
}]\index{CINV}  Constructive inverse. {\em Builds a list containing the
    elements of the argument in inverse order.}
  \item[{\tt M <- INV(L) 
}]\index{INV}  Inverse. {\em Inverts a list destructively.}
  \end{description}

\item[Insertion:] \ \
  \begin{description}
  \item[{\tt  LINS(a,L) 
}]\index{LINS}  List insertion. {\em Inserts an object after the first
    element of a list.}
  \item[{\tt L <- LEINST(A,i,a) 
}]\index{LEINST}  List element insertion. {\em Inserts an object after the
    i-th element of a list.}
  \item[{\tt Lp <- SUFFIX(L,b) 
}]\index{SUFFIX}  Suffix. {\em Appends an object after the last element of a
    list.}
  \item[{\tt B <- LINSRT(a,A) 
}]\index{LINSRT}  List insertion. {\em Inserts an atom into a sorted list of
    atoms.}
  \end{description}

\item[Combinatorial:] \ \
  \begin{description}
  \item[{\tt M <- LEROT(L,i,j) 
}]\index{LEROT}  List element rotation. {\em Rotates some consecutive
    elements of a list.}
  \item[{\tt Lp <- LPERM(L,P) 
}]\index{LPERM}  List permute. {\em Permutes the elements of a list.}
  \item[{\tt Pp <- PERMCY(P) 
}]\index{PERMCY}  Permutation, cyclic. {\em Rotates a list to the left.}
  \item[{\tt L <- PERMR(n) 
}]\index{PERMR}  Permutation, random. {\em Builds a list of the first n
    integers in random order.}
  \item[{\tt B <- LEXNEX(A) 
}]\index{LEXNEX}  Lexicographically next. {\em Computes the lexicographical
    successor of a permutation.}
  \end{description}

\item[Set Operations:] \ \
  \begin{description}
  \item[{\tt b <- SEQUAL(A,B) 
}]\index{SEQUAL}  Set equality. {\em Tests whether two sets represented as
    unordered redundant lists are equal.}
  \item[{\tt C <- SDIFF(A,B) 
}]\index{SDIFF}  Set difference.
  \item[{\tt B <- SFCS(A) 
}]\index{SFCS}  Set from characteristic set.
  \item[{\tt C <- SINTER(A,B) 
}]\index{SINTER}  Set intersection.
  \item[{\tt C <- SUNION(A,B) 
}]\index{SUNION}  Set union.
  \item[{\tt C <- USDIFF(A,B) 
}]\index{USDIFF}  Unordered set difference.
  \item[{\tt C <- USINT(A,B) 
}]\index{USINT}  Unordered set intersection.
  \item[{\tt C <- USUN(A,B) 
}]\index{USUN}  Unordered set union.
  \end{description}

\item[Sorting:] \ \
  \begin{description}
  \item[{\tt M <- LBIBMS(L) 
}]\index{LBIBMS}  List of BETA-integers bubble-merge sort. {\em Sorts a list
    of atoms into non-descending order.}
  \item[{\tt  LBIBS(L) 
}]\index{LBIBS}  List of BETA-integers bubble sort. {\em Sorts a list of
    atoms into non-descending order.}
  \item[{\tt L <- LBIM(L1,L2) 
}]\index{LBIM}  List of BETA-integers merge. {\em Merges two sorted lists of
    atoms.}
  \item[{\tt B <- LINSRT(a,A) 
}]\index{LINSRT}  List insertion. {\em Inserts an atom into a sorted list of
    atoms.}
  \item[{\tt C <- LMERGE(A,B) 
}]\index{LMERGE}  List merge. {\em Constructively merges two lists avoiding
  duplicate elements.}
  \end{description}

\item[Input/Output:] \ \
  \begin{description}
  \item[{\tt A <- AREAD() 
}]\index{AREAD}  Atom read.
  \item[{\tt  AWRITE(A) 
}]\index{AWRITE}  Atom write.
  \item[{\tt L <- LREAD() 
}]\index{LREAD}  List read.
  \item[{\tt  LWRITE(L) 
}]\index{LWRITE}  List write.
  \item[{\tt B <- OREAD() 
}]\index{OREAD}  Object read.
  \item[{\tt  OWRITE(B) 
}]\index{OWRITE}  Object write.
  \end{description}

\item[Miscellaneous:] \ \
  \begin{description}
  \item[{\tt C <- PAIR(A,B) 
}]\index{PAIR}  Pair. {\em Builds a list by interleaving the elements of two
    lists.}
  \item[{\tt  SFIRST(L,a) 
}]\index{SFIRST}  Set first element. {\em Sets the first element of a list.}
  \item[{\tt  SLELTI(A,i,a) 
}]\index{SLELTI}  Set list element. {\em Sets the i-th element of a list.}
  \item[{\tt  SRED(L,Lp) 
}]\index{SRED}  Set reductum. {\em Sets the reductum of a list.}
  \end{description}
\end{description}