1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Mathematical Preliminaries}
\label{c:LP s:MP}
Let $A$ be a finite domain and let $C$ be the closure of $A$ under the
operation of finite sequence formation. Then
\begin{itemize}
\item the elements of $C$ are called {\em objects},
\item the elements of $A$ are called {\em atoms}, and
\item the elements of $C \backslash\! A$ are called {\em lists}.
\end{itemize}
Note that the atom $a$ and the list $(a)$ containing $a$ as its only
element are distinct objects. Furthermore, the set of lists also
encompasses the empty sequence, which we call the empty list.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Purpose}
\label{c:LP s:P}
Lists are the basis for nearly all \saclib\ internal representations of
elements of domains like the integers, polynomials, algebraic numbers, etc.
The \saclib\ list processing package implements the abstract concept of
lists described above.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Definitions of Terms}
\label{c:LP s:D}
\begin{description}
\item[atom]\index{atom}
An integer \tta\ such that $-\BETA < \tta < \BETA$.
\item[list (handle)]\index{list}\index{handle!of a list}
An integer \ttL\ such that $\BETA \leq \ttL < \BETAp$, where \BETA\ and
\BETAp\ are positive integer constants\footnote{
See Section \ref{c:NIW s:CGV} for more information on \BETA\ and \BETAp.
}.
\ttL\ is a reference to the memory location of the first cell of the
list $L$.
The term {\em list} is used to denote the \saclib\ internal
representation of an element of $C \backslash\! A$ as given in Section
\ref{c:LP s:MP}. If emphasis is on the reference to memory, the term {\em
list handle} is used.
\item[(list) cell]\index{cell}
The memory space used to store a (reference to a) single list element and
bookkeeping information needed to combine several cells into a list.
\item[(list) element]\index{element!of a list}
If $L$ is the list $(l_1, l_2, \ldots, l_n)$, then $l_1$ is its {\em
first element}, $l_2$ is its {\em second element}, etc.
\item[empty list]\index{list!empty}\index{\NIL}
A list containing no elements, represented by the constant \NIL.
\item[object]\index{object}
A term denoting both atoms and lists.
\item[composition]\index{composition}
of an object $l$ and a list $(l_1, l_2, \ldots, l_n)$ is the list $(l,
l_1, l_2, \ldots, l_n)$.
\item[reductum]\index{reductum!of a list}
of a list $(l_1, l_2, \ldots, l_n)$ is the list $(l_2, l_3, \ldots,
l_n)$. The reductum of the empty list is undefined.
\item[concatenation]\index{concatenation}
of lists $(l_1, l_2, \ldots, l_n)$ and $(m_1, m_2, \ldots, m_k)$ is
the list $(l_1, \ldots,\\l_n, m_1, \ldots, m_k)$.
\item[inverse]\index{inverse!of a list}
of a list $(l_1, l_2, \ldots, l_n)$ is the list $(l_n, l_{n-1}, \ldots,
l_1)$.
\item[length]\index{length!of a list}
of a list $(l_1,l_2,\ldots,l_n)$ is $n$. The length of the empty list is 0.
\item[extent]\index{extent}
The number of cells used by an object. More precisely:
\begin{itemize}
\item
${\tt EXTENT}(a) = 0$ if $a$ is an atom.
\item
${\tt EXTENT}(\NIL) = 0$.
\item
${\tt EXTENT}(L) = 1 + {\tt EXTENT}(l_1) + {\tt EXTENT}((l_2,
\ldots, l_n))$, where $L$ is the non-empty list $(l_1, l_2, \ldots, l_n)$.
\end{itemize}
\item[order]\index{order!of a list}
The depth of an object. More precisely:
\begin{itemize}
\item
${\tt ORDER}(a) = 0$ if $a$ is an atom.
\item
${\tt ORDER}(\NIL) = 1$.
\item
${\tt ORDER}(L) = {\tt MAX}({\tt ORDER}(l_1)+1, {\tt ORDER}((l_2, \ldots,
l_n)))$, where $L$ is the non-empty list $(l_1, l_2, \ldots, l_n)$.
\end{itemize}
\item[side effects]\index{side effects}
When a function modifies the content of one or more cells of the input
list(s), it is said to cause {\em side effects}. This is always noted
in the function specifications.
\item[destructive]\index{destructive}
An operation on lists causing side effects is called {\em destructive}.
\item[(unordered) set]\index{set!unordered}
An (unordered) list of atoms.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Functions}
\label{c:LP s:F}
\begin{description}
\item[Constructors:] \ \
\begin{description}
\item[{\tt M <- COMP(a,L)
}]\index{COMP} Composition. {\em Prefixes an object to a list.}
\item[{\tt M <- COMP2(a,b,L)
}]\index{COMP2} Composition 2. {\em Prefixes 2 objects to a list.}
\item[{\tt M <- COMP3(a1,a2,a3,L)
}]\index{COMP3} Composition 3. {\em Prefixes 3 objects to a list.}
\item[{\tt M <- COMP4(a1,a2,a3,a4,L)
}]\index{COMP4} Composition 4. {\em Prefixes 4 objects to a list.}
\item[{\tt L <- LIST1(a)
}]\index{LIST1} List, 1 element. {\em Builds a list from one object.}
\item[{\tt L <- LIST2(a,b)
}]\index{LIST2} List, 2 elements. {\em Builds a list from 2 objects.}
\item[{\tt L <- LIST3(a1,a2,a3)
}]\index{LIST3} List, 3 elements. {\em Builds a list from 3 objects.}
\item[{\tt L <- LIST4(a1,a2,a3,a4)
}]\index{LIST4} List, 4 elements. {\em Builds a list from 4 objects.}
\item[{\tt L <- LIST5(a1,a2,a3,a4,a5)
}]\index{LIST5} List, 5 elements. {\em Builds a list from 5 objects.}
\item[{\tt L <- LIST10(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10)
}]\index{LIST10} List, 10 elements. {\em Builds a list from 10 objects.}
\end{description}
\item[Selectors:] \ \
\begin{description}
\item[{\tt ADV(L; a,Lp)
}]\index{ADV} Advance. {\em Returns the first element and the reductum of a
list.}
\item[{\tt ADV2(L; a,b,Lp)
}]\index{ADV2} Advance 2. {\em Returns the first 2 elements and the 2nd
reductum of a list.}
\item[{\tt ADV3(L; a1,a2,a3,Lp)
}]\index{ADV3} Advance 3. {\em Returns the first 3 elements and the 3rd
reductum of a list.}
\item[{\tt ADV4(L; a1,a2,a3,a4,Lp)
}]\index{ADV4} Advance 4. {\em Returns the first 4 elements and the 4th
reductum of a list.}
\item[{\tt AADV(L; a,Lp)
}]\index{AADV} Arithmetic advance. {\em Returns the first element and the
reductum of a non-empty list, returns 0 as the first element if the
list is empty.}
\item[{\tt a <- FIRST(L)
}]\index{FIRST} First. {\em Returns the first element of a list.}
\item[{\tt FIRST2(L; a,b)
}]\index{FIRST2} First 2. {\em Returns the first 2 elements of a list.}
\item[{\tt FIRST3(L; a1,a2,a3)
}]\index{FIRST3} First 3. {\em Returns the first 3 elements of a list.}
\item[{\tt FIRST4(L; a1,a2,a3,a4)
}]\index{FIRST4} First 4. {\em Returns the first 4 elements of a list.}
\item[{\tt a <- SECOND(L)
}]\index{SECOND} Second. {\em Returns the 2nd element of a list.}
\item[{\tt a <- THIRD(L)
}]\index{THIRD} Third. {\em Returns the 3rd element of a list.}
\item[{\tt a <- FOURTH(L)
}]\index{FOURTH} Fourth. {\em Returns the 4th element of a list.}
\item[{\tt Lp <- LASTCELL(L)
}]\index{LASTCELL} Last cell. {\em Returns the list handle of the last cell
of a list.}
\item[{\tt a <- LELTI(A,i)
}]\index{LELTI} List element. {\em Returns the i-th element of a list.}
\item[{\tt Lp <- RED(L)
}]\index{RED} Reductum. {\em Returns the reductum of a list.}
\item[{\tt Lp <- RED2(L)
}]\index{RED2} Reductum 2. {\em Returns the 2nd reductum of a list.}
\item[{\tt M <- RED3(L)
}]\index{RED3} Reductum 3. {\em Returns the 3rd reductum of a list.}
\item[{\tt M <- RED4(L)
}]\index{RED4} Reductum 4. {\em Returns the 4th reductum of a list.}
\item[{\tt B <- REDI(A,i)
}]\index{REDI} Reductum. {\em Returns the i-th reductum of a list.}
\end{description}
\item[Information and Predicates:] \ \
\begin{description}
\item[{\tt t <- ISOBJECT(a)
}]\index{ISOBJECT} Test for object. {\em Tests whether the argument
represents an object.}
\item[{\tt t <- ISATOM(a)
}]\index{ISATOM} Test for atom. {\em Tests whether the argument represents
an atom.}
\item[{\tt t <- ISLIST(a)
}]\index{ISLIST} Test for list. {\em Tests whether the argument represents
a list.}
\item[{\tt t <- ISNIL(L)
}]\index{ISNIL} Test for empty list. {\em Tests whether the argument
represents the empty list.}
\item[{\tt t <- EQUAL(a,b)
}]\index{EQUAL} Equal. {\em Tests whether two objects are equal.}
\item[{\tt t <- MEMBER(a,L)
}]\index{MEMBER} Membership test. {\em Tests whether an object is an element of
a list.}
\item[{\tt i <- LSRCH(a,A)
}]\index{LSRCH} List search. {\em Returns the index of an object in a list.}
\item[{\tt n <- EXTENT(a)
}]\index{EXTENT} Extent.
\item[{\tt n <- LENGTH(L)
}]\index{LENGTH} Length.
\item[{\tt n <- ORDER(a)
}]\index{ORDER} Order.
\end{description}
\item[Concatenation:] \ \
\begin{description}
\item[{\tt L <- CCONC(L1,L2)
}]\index{CCONC} Constructive concatenation. {\em Builds a list
$(l_1,\ldots,l_m,\\l_{m+1},\ldots,l_n)$ from lists $(l_1,\ldots,l_m)$ and
$(l_{m+1},\ldots,l_n)$.}
\item[{\tt L <- CONC(L1,L2)
}]\index{CONC} Concatenation. {\em Concatenates two lists destructively.}
\item[{\tt M <- LCONC(L)
}]\index{LCONC} List concatenation. {\em Concatenates the elements of a
list of lists destructively.}
\end{description}
\item[Inversion:] \ \
\begin{description}
\item[{\tt M <- CINV(L)
}]\index{CINV} Constructive inverse. {\em Builds a list containing the
elements of the argument in inverse order.}
\item[{\tt M <- INV(L)
}]\index{INV} Inverse. {\em Inverts a list destructively.}
\end{description}
\item[Insertion:] \ \
\begin{description}
\item[{\tt LINS(a,L)
}]\index{LINS} List insertion. {\em Inserts an object after the first
element of a list.}
\item[{\tt L <- LEINST(A,i,a)
}]\index{LEINST} List element insertion. {\em Inserts an object after the
i-th element of a list.}
\item[{\tt Lp <- SUFFIX(L,b)
}]\index{SUFFIX} Suffix. {\em Appends an object after the last element of a
list.}
\item[{\tt B <- LINSRT(a,A)
}]\index{LINSRT} List insertion. {\em Inserts an atom into a sorted list of
atoms.}
\end{description}
\item[Combinatorial:] \ \
\begin{description}
\item[{\tt M <- LEROT(L,i,j)
}]\index{LEROT} List element rotation. {\em Rotates some consecutive
elements of a list.}
\item[{\tt Lp <- LPERM(L,P)
}]\index{LPERM} List permute. {\em Permutes the elements of a list.}
\item[{\tt Pp <- PERMCY(P)
}]\index{PERMCY} Permutation, cyclic. {\em Rotates a list to the left.}
\item[{\tt L <- PERMR(n)
}]\index{PERMR} Permutation, random. {\em Builds a list of the first n
integers in random order.}
\item[{\tt B <- LEXNEX(A)
}]\index{LEXNEX} Lexicographically next. {\em Computes the lexicographical
successor of a permutation.}
\end{description}
\item[Set Operations:] \ \
\begin{description}
\item[{\tt b <- SEQUAL(A,B)
}]\index{SEQUAL} Set equality. {\em Tests whether two sets represented as
unordered redundant lists are equal.}
\item[{\tt C <- SDIFF(A,B)
}]\index{SDIFF} Set difference.
\item[{\tt B <- SFCS(A)
}]\index{SFCS} Set from characteristic set.
\item[{\tt C <- SINTER(A,B)
}]\index{SINTER} Set intersection.
\item[{\tt C <- SUNION(A,B)
}]\index{SUNION} Set union.
\item[{\tt C <- USDIFF(A,B)
}]\index{USDIFF} Unordered set difference.
\item[{\tt C <- USINT(A,B)
}]\index{USINT} Unordered set intersection.
\item[{\tt C <- USUN(A,B)
}]\index{USUN} Unordered set union.
\end{description}
\item[Sorting:] \ \
\begin{description}
\item[{\tt M <- LBIBMS(L)
}]\index{LBIBMS} List of BETA-integers bubble-merge sort. {\em Sorts a list
of atoms into non-descending order.}
\item[{\tt LBIBS(L)
}]\index{LBIBS} List of BETA-integers bubble sort. {\em Sorts a list of
atoms into non-descending order.}
\item[{\tt L <- LBIM(L1,L2)
}]\index{LBIM} List of BETA-integers merge. {\em Merges two sorted lists of
atoms.}
\item[{\tt B <- LINSRT(a,A)
}]\index{LINSRT} List insertion. {\em Inserts an atom into a sorted list of
atoms.}
\item[{\tt C <- LMERGE(A,B)
}]\index{LMERGE} List merge. {\em Constructively merges two lists avoiding
duplicate elements.}
\end{description}
\item[Input/Output:] \ \
\begin{description}
\item[{\tt A <- AREAD()
}]\index{AREAD} Atom read.
\item[{\tt AWRITE(A)
}]\index{AWRITE} Atom write.
\item[{\tt L <- LREAD()
}]\index{LREAD} List read.
\item[{\tt LWRITE(L)
}]\index{LWRITE} List write.
\item[{\tt B <- OREAD()
}]\index{OREAD} Object read.
\item[{\tt OWRITE(B)
}]\index{OWRITE} Object write.
\end{description}
\item[Miscellaneous:] \ \
\begin{description}
\item[{\tt C <- PAIR(A,B)
}]\index{PAIR} Pair. {\em Builds a list by interleaving the elements of two
lists.}
\item[{\tt SFIRST(L,a)
}]\index{SFIRST} Set first element. {\em Sets the first element of a list.}
\item[{\tt SLELTI(A,i,a)
}]\index{SLELTI} Set list element. {\em Sets the i-th element of a list.}
\item[{\tt SRED(L,Lp)
}]\index{SRED} Set reductum. {\em Sets the reductum of a list.}
\end{description}
\end{description}
|