1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
|
from sage.all import EllipticCurve, Integer, QQ, Set, magma, prime_range, factorial, mwrank_get_precision, mwrank_set_precision, srange, pari
from sage.databases.cremona import parse_cremona_label, class_to_int
try:
from sage.databases.cremona import cmp_code
except:
pass
mwrank_saturation_precision = 300
mwrank_saturation_maxprime = 200000
GP = '/usr/local/bin/gp'
def print_data(outfile, code, ainvs, r, t):
print("Code = {}".format(code))
print("Curve = {}".format(EllipticCurve(ainvs)))
print("rank = {}".format(r))
print("torsion = {}".format(t))
def put_allcurves_line(outfile, N, cl, num, ainvs, r, t):
line = ' '.join([str(N),cl,str(num),str(ainvs).replace(' ',''),str(r),str(t)])
outfile.write(line+'\n')
def make_allcurves_lines(outfile, code, ainvs, r, t):
E = EllipticCurve(ainvs)
N, cl, n = parse_cremona_label(code)
for i, F in enumerate(E.isogeny_class().curves):
put_allcurves_line(outfile,N,cl,str(i+1),list(F.ainvs()),r,F.torsion_order())
outfile.flush()
def process_curve_file(infilename, outfilename, use):
infile = open(infilename)
outfile = open(outfilename, mode='a')
for L in infile.readlines():
N, iso, num, ainvs, r, tor, d = L.split()
code = N+iso+num
N = int(N)
num = int(num)
r = int(r)
tor = int(tor)
ainvs = eval(ainvs)
use(outfile, code, ainvs, r, tor)
infile.close()
outfile.close()
def liststr(l):
return str(l).replace(' ','')
def shortstr(E):
return liststr(list(E.ainvs()))
def shortstrlist(Elist):
return str([list(F.ainvs()) for F in Elist]).replace(' ','')
def pointstr(P):
P = list(P)
z = P[1].denominator()
P = [z*c for c in P]
return '['+':'.join([str(c) for c in P])+']'
# return str(P).replace('(','[').replace(')',']').replace(' ','')
# convert '[x:y:z]' to '[x/z,y/z]'
def pointPtoA(P):
x,y,z = [Integer(c) for c in P[1:-1].split(":")]
return [x/z,y/z]
def matstr(m):
return str(list(m)).replace('(','[').replace(')',']').replace(' ','')
# Assuming that E is known to have rank 1, returns a point on E
# computed by Magma's HeegnerPoint command
def magma_rank1_gen(E):
mP = magma(E).HeegnerPoint(nvals=2)[1]
P = E([mP[i].sage() for i in [1,2,3]])
return P
# Assuming that E is known to have rank 1, returns a point on E
# computed by GP's ellheegner() command
def pari_rank1_gen_old(E, stacksize=1024000000):
from os import system, getpid, unlink
f = 'tempfile-'+str(getpid())
comm = "LD_LIBRARY_PATH=/usr/local/lib; echo `echo 'ellheegner(ellinit("+str(list(E.ainvs()))+"))' | %s -q -f -s %s` > %s;" % (GP,stacksize,f)
system(comm)
P = open(f).read()
#print(P)
P = open(f).read().partition("[")[2].partition("]")[0]
P = P.replace("\xb1","") # needed for 497805u1
#print(P)
unlink(f)
P = E([QQ(c) for c in P.split(',')])
#print(P)
return P
def pari_rank1_gen(E):
return E(pari(E).ellheegner().sage())
# Given a matrix of isogenies and a list of points on the initial
# curve returns a# list of their images on each other curve. The
# complication is that the isogenies will only exist when they have
# prime degree.
def map_points(maps, Plist):
ncurves = len(maps)
if len(Plist)==0:
return [[] for _ in range(ncurves)]
if ncurves==1:
return [Plist]
Qlists = [Plist] + [[]]*(ncurves-1)
nfill = 1
for i in range(ncurves):
if nfill==ncurves:
return Qlists
for j in range(1,ncurves):
if not (maps[i][j] == 0) and Qlists[j]==[]:
Qlists[j] = [maps[i][j](P) for P in Qlists[i]]
nfill += 1
# Find integral points in a fail-safe way uing both Sage and Magma,
# comparing, returning the union in all cases and outputting a warning
# message if they disagree.
def get_integral_points_with_sage(E, gens):
return [P[0] for P in E.integral_points(mw_base=gens)]
def get_integral_points_with_magma(E, gens):
magma.eval('E:=EllipticCurve({});'.format(list(E.ainvs())))
magma.eval('pts:=[];')
for P in gens:
magma.eval('Append(~pts,E!{});'.format(list(P)))
res = magma.eval('IntegralPoints(E : FBasis:=pts);')
return [p[0] for p in eval(res.split("\n")[0].replace(":",","))]
def get_integral_points(E, gens, verbose=True):
x_list_magma = get_integral_points_with_magma(E, gens)
x_list_sage = get_integral_points_with_sage(E, gens)
if x_list_magma != x_list_sage:
if verbose:
print("Curve {} = {}: \n".format(E.ainvs))
print("Integral points via Magma: {}".format(x_list_magma))
print("Integral points via Sage: {}".format(x_list_sage))
x_list = list(Set(x_list_sage)+Set(x_list_magma))
x_list.sort()
return x_list
# Sage's E.aplist(100) returns a list of the Fourier coefficients for
# p<100. We want to replace the coefficient for p|N with the
# W-eigenvalue (the root number) and append the W-eigenvalues for p|N,
# p>100.
def wstr(n,w): # str(n) with enough spaces prepended to give width w
a = str(n)
if len(a)<w:
a = ' '*(w-len(a)) + a
return a
def my_ap(E,D,p):
if p.divides(D):
return E.root_number(p)
return E.ap(p)
def my_ap_str(E,D,p):
if p.divides(D):
a = E.root_number(p)
if a==1:
if p>23:
return ' +'
return ' +'
if p>23:
return ' -'
return ' -'
if p>23:
return wstr(E.ap(p),3)
return wstr(E.ap(p),2)
def my_aplist(E):
D = E.discriminant()
ap = [my_ap_str(E,D,p) for p in prime_range(100)]
qlist = D.support()
for q in qlist:
if q>100:
if E.root_number(q)==1:
ap.append('+('+str(q)+')')
else:
ap.append('-('+str(q)+')')
return ' '.join(ap)
# Given a filename like curves.000-999, read the data in the file,
# compute the isogeny class for each curve, and output (1)
# allcurves.000-999, (2) allisog.000-999 (with the same suffix).
def make_allcurves_and_allisog(infilename, mode='w'):
infile = open(infilename)
pre, suf = infilename.split(".")
allcurvefile = open("tallcurves."+suf, mode=mode)
allisogfile = open("tallisog."+suf, mode=mode)
for L in infile.readlines():
N, cl, num, ainvs, r, tor, d = L.split()
E = EllipticCurve(eval(ainvs))
Cl = E.isogeny_class()
Elist = Cl.curves
mat = Cl.matrix()
torlist = [F.torsion_order() for F in Elist]
for i in range(len(Elist)):
line = ' '.join([N,cl,str(i+1),shortstr(Elist[i]),r,str(torlist[i])])
allcurvefile.write(line+'\n')
print("allcurvefile: {}".format(line))
line = ' '.join([str(N),cl,str(1),ainvs,shortstrlist(Elist),matstr(mat)])
allisogfile.write(line+'\n')
print("allisogfile: {}".format(line))
infile.close()
allcurvefile.close()
allisogfile.close()
# Version using David Roe's new Isogeny Class class (trac #12768)
def make_allcurves_and_allisog_new(infilename, mode='w', verbose=False):
infile = open(infilename)
pre, suf = infilename.split(".")
allcurvefile = open("tallcurves."+suf, mode=mode)
allisogfile = open("tallisog."+suf, mode=mode)
count=0
for L in infile.readlines():
count +=1
if count%1000==0:
print(L)
N, cl, num, ainvs, r, tor, d = L.split()
E = EllipticCurve(eval(ainvs))
Cl = E.isogeny_class(order="database")
Elist = Cl.curves
torlist = [F.torsion_order() for F in Elist]
for i in range(len(Elist)):
line = ' '.join([N,cl,str(i+1),shortstr(Elist[i]),r,str(torlist[i])])
allcurvefile.write(line+'\n')
if verbose:
print("allcurvefile: {}".format(line))
mat = Cl.matrix()
line = ' '.join([str(N),cl,str(1),ainvs,shortstrlist(Elist),matstr(mat)])
allisogfile.write(line+'\n')
if verbose:
print("allisogfile: {}".format(line))
infile.close()
allcurvefile.close()
allisogfile.close()
# Given a filename like curves.000-999, read the data in the file,
# compute the isogeny class for each curve, and output (1)
# allcurves.000-999, (2) allisog.000-999 (with the same suffix). Also
# compute the bsd data for each curve and output (3) allbsd.000-999,
# (4) allgens.000-999 (with the same suffix), (5) degphi.000-999, (6)
# intpts.000-999, (7) alldegphi.000-999
# Version to compute gens & torsion gens too
def make_datafiles(infilename, mode='w', verbose=False, prefix="t"):
infile = open(infilename)
pre, suf = infilename.split(".")
allcurvefile = open(prefix+"allcurves."+suf, mode=mode)
allisogfile = open(prefix+"allisog."+suf, mode=mode)
allbsdfile = open(prefix+"allbsd."+suf, mode=mode)
allgensfile = open(prefix+"allgens."+suf, mode=mode)
degphifile = open(prefix+"degphi."+suf, mode=mode)
alldegphifile = open(prefix+"alldegphi."+suf, mode=mode)
apfile = open(prefix+"aplist."+suf, mode=mode)
intptsfile = open(prefix+"intpts."+suf, mode=mode)
for L in infile.readlines():
if verbose: print("="*72)
N, cl, num, ainvs, r, tor, d = L.split()
E = EllipticCurve(eval(ainvs))
r=int(r)
# Compute the isogeny class
Cl = E.isogeny_class()
Elist = Cl.curves
mat = Cl.matrix()
maps = Cl.isogenies()
ncurves = len(Elist)
print("class {} (rank {}) has {} curve(s)".format(N+cl,r,ncurves))
line = ' '.join([str(N),cl,str(1),ainvs,shortstrlist(Elist),matstr(mat)])
allisogfile.write(line+'\n')
if verbose: print("allisogfile: {}".format(line))
# compute BSD data for each curve
torgroups = [F.torsion_subgroup() for F in Elist]
torlist = [G.order() for G in torgroups]
torstruct = [list(G.invariants()) for G in torgroups]
torgens = [[P.element() for P in G.gens()] for G in torgroups]
cplist = [F.tamagawa_product() for F in Elist]
omlist = [F.real_components()*F.period_lattice().real_period() for F in Elist]
Lr1 = E.pari_curve().ellanalyticrank()[1].sage() / factorial(r)
# LE = E.lseries()
# LEdok = LE.dokchitser(100) # bits precision (default is 53)
if r==0:
genlist = [[] for F in Elist]
reglist = [1 for F in Elist]
# Lr1 = LEdok(1)
else:
# Lr1 = LEdok.derivative(1,r) / factorial(r)
# #Lr1 = E.lseries().dokchitser().derivative(1,r)/factorial(r)
if r==1:
Plist = E.point_search(15)
if len(Plist)==0:
try:
#Plist = [magma_rank1_gen(E)]
print("using GP's ellheegner() to find generator")
Plist = [pari_rank1_gen(E)]
print("P = {}".format(Plist[0]))
except: # Magma/pari bug or something
Plist = E.gens()
else:
if torlist[0]%2==1:
if N+cl=="322074i":
P1 = E(QQ(95209997)/361, QQ(-796563345544)/6859)
P2 = E(QQ(67511363092960062552491477869533612821)/167548532744324594465910917052304,
QQ(-546962755962107290021339666753477014846325372323086316509)/2168757247628325524167944948382918905481652710592)
Plist = [P1,P2]
print("Special case gens for {}{}: {}".format(N,cl,Plist))
else:
try:
s = E.simon_two_descent(lim3=5000)
Plist = E.gens()
except:
print("Simon failed, using mwrank: ")
Plist = E.gens()
else:
Plist = E.gens()
genlist = map_points(maps,Plist)
prec0=mwrank_get_precision()
mwrank_set_precision(mwrank_saturation_precision)
# genlist = [Elist[i].saturation(genlist[i], max_prime=mwrank_saturation_maxprime)[0] for i in range(ncurves)]
if verbose: print("genlist (before saturation) = {}".format(genlist))
genlist = [Elist[i].saturation(genlist[i])[0] for i in range(ncurves)]
if verbose: print("genlist (before reduction) = {}".format(genlist))
genlist = [Elist[i].lll_reduce(genlist[i])[0] for i in range(ncurves)]
mwrank_set_precision(prec0)
if verbose: print("genlist (after reduction)= {}".format(genlist))
reglist = [Elist[i].regulator_of_points(genlist[i]) for i in range(ncurves)]
shalist = [Lr1*torlist[i]**2/(cplist[i]*omlist[i]*reglist[i]) for i in range(ncurves)]
squares = [n*n for n in srange(1,100)]
for i,s in enumerate(shalist):
if not round(s) in squares:
print("bad sha value %s for %s" % (s,str(N)+cl+str(i+1)))
print("Lr1 = %s" % Lr1)
print("#t = %s" % torlist[i])
print("cp = %s" % cplist[i])
print("om = %s" % omlist[i])
print("reg = %s" % reglist[i])
return Elist[i]
if verbose: print("shalist = {}".format(shalist))
# compute modular degrees
# degphilist = [e.modular_degree(algorithm='magma') for e in Elist]
# degphi = degphilist[0]
# NB The correctness of the following relies on E being optimal!
try:
degphi = E.modular_degree(algorithm='magma')
except RuntimeError:
degphi = 0
degphilist1 = [degphi*mat[0,j] for j in range(ncurves)]
degphilist = degphilist1
if verbose: print("degphilist = {}".format(degphilist))
# compute aplist for optimal curve only
aplist = my_aplist(E)
if verbose: print("aplist = {}".format(aplist))
# Compute integral points (x-coordinates)
intpts = [get_integral_points(Elist[i],genlist[i]) for i in range(ncurves)]
#if verbose: print("intpts = {}".format(intpts))
for i, Ei, xs in zip(range(ncurves),Elist,intpts):
print("{}{}{} = {}: intpts = {}".format(N,cl,(i+1),Ei.ainvs(),xs))
# Output data for optimal curves
# aplist
line = ' '.join([N,cl,aplist])
if verbose: print("aplist: {}".format(line))
apfile.write(line+'\n')
# degphi
line = ' '.join([N,cl,'1',str(degphi),str(Set(degphi.prime_factors())).replace(' ',''),shortstr(E)])
if verbose: print("degphifile: {}".format(line))
degphifile.write(line+'\n')
# Output data for each curve
for i in range(ncurves):
# allcurves
line = ' '.join([N,cl,str(i+1),shortstr(Elist[i]),str(r),str(torlist[i])])
allcurvefile.write(line+'\n')
if verbose: print("allcurvefile: {}".format(line))
# allbsd
line = ' '.join([N,cl,str(i+1),shortstr(Elist[i]),str(r),str(torlist[i]),str(cplist[i]),str(omlist[i]),str(Lr1),str(reglist[i]),str(shalist[i])])
allbsdfile.write(line+'\n')
if verbose: print("allbsdfile: {}".format(line))
# allgens (including torsion gens, listed last)
line = ' '.join([str(N),cl,str(i+1),shortstr(Elist[i]),str(r)]
+ [liststr(torstruct[i])]
+ [pointstr(P) for P in genlist[i]]
+ [pointstr(P) for P in torgens[i]]
)
allgensfile.write(line+'\n')
if verbose:
print("allgensfile: {}".format(line))
# intpts
line = ''.join([str(N),cl,str(i+1)]) + ' ' + shortstr(Elist[i]) + ' ' + liststr(intpts[i])
intptsfile.write(line+'\n')
if verbose: print("intptsfile: {}".format(line))
# alldegphi
line = ' '.join([str(N),cl,str(i+1),shortstr(Elist[i]),liststr(degphilist[i])])
alldegphifile.write(line+'\n')
if verbose: print("alldegphifile: {}".format(line))
infile.close()
allbsdfile.close()
allgensfile.close()
allcurvefile.close()
allisogfile.close()
degphifile.close()
intptsfile.close()
apfile.close()
#
# Compute torsion gens only from allcurves file
#
def make_rank0_torsion(infilename, mode='w', verbose=False, prefix="t"):
infile = open(infilename)
pre, suf = infilename.split(".")
allgensfile = open(prefix+"allgens0."+suf, mode=mode)
for L in infile.readlines():
N, cl, num, ainvs, r, tor = L.split()
if int(r)==0:
E = EllipticCurve(eval(ainvs))
# compute torsion data
T = E.torsion_subgroup()
torstruct = list(T.invariants())
torgens = [P.element() for P in T.gens()]
gens = []
# Output data
line = ' '.join([str(N),cl,num,ainvs,r]
+ [liststr(torstruct)]
+ [pointstr(P) for P in gens]
+ [pointstr(P) for P in torgens]
)
allgensfile.write(line+'\n')
if verbose:
print("allgensfile: {}".format(line))
infile.close()
allgensfile.close()
# Read allgens file without torsion and output allgens file with torsion
#
def add_torsion(infilename, mode='w', verbose=False, prefix="t"):
infile = open(infilename)
pre, suf = infilename.split(".")
allgensfile = open(prefix+"allgens."+suf, mode=mode)
for L in infile.readlines():
N, cl, num, ainvs, r, gens = L.split(' ',5)
gens = gens.split()
E = EllipticCurve(eval(ainvs))
T = E.torsion_subgroup()
torstruct = list(T.invariants())
torgens = [P.element() for P in T.smith_gens()]
# allgens (including torsion gens, listed last)
line = ' '.join([N,cl,num,ainvs,r]
+ [liststr(torstruct)]
+ gens #[pointstr(P) for P in gens]
+ [pointstr(P) for P in torgens]
)
if verbose: print(line)
allgensfile.write(line+'\n')
infile.close()
allgensfile.close()
# Read allgens file and for curves with non-cyclic torsion, make sure
# that the gens are in the same order as the group structure
# invariants:
def fix_torsion(infilename, mode='w', verbose=False, prefix="t"):
infile = open(infilename)
pre, suf = infilename.split(".")
allgensfile = open(prefix+"allgens."+suf, mode=mode)
for L in infile.readlines():
if verbose:
print("old line")
print(L)
N, cl, num, ainvs, r, gens = L.split(' ',5)
gens = gens.split()
tor_invs = gens[0]
inf_gens = gens[1:int(r)+1]
tor_gens = gens[int(r)+1:]
if verbose:
print("old line rank = %s, gens=%s"%(r,gens))
print(tor_invs, inf_gens, tor_gens)
if len(tor_gens)<2:
allgensfile.write(L)
else:
if verbose:
print("old line")
print(L)
E = EllipticCurve(eval(ainvs))
T = E.torsion_subgroup()
tor_struct = list(T.invariants())
tor_gens = [P.element() for P in T.smith_form_gens()]
assert all([P.order()==n for P,n in zip(tor_gens,tor_struct)])
# allgens (including torsion gens, listed last)
line = ' '.join([N,cl,num,ainvs,r]
+ [liststr(tor_struct)]
+ inf_gens #[pointstr(P) for P in gens]
+ [pointstr(P) for P in tor_gens]
)
if verbose:
print("new line")
print(line)
allgensfile.write(line+'\n')
infile.close()
allgensfile.close()
def fix_all_torsion():
for n in range(23):
ns=str(n)
filename = "allgens."+ns+"0000-"+ns+"9999"
print(filename)
fix_torsion(filename)
# Read allgens file (with torsion) and output paricurves file
#
def make_paricurves(infilename, mode='w', verbose=False, prefix="t"):
infile = open(infilename)
pre, suf = infilename.split(".")
paricurvesfile = open(prefix+"paricurves."+suf, mode=mode)
for L in infile.readlines():
N, cl, num, ainvs, r, gens = L.split(' ',5)
if int(r)==0:
gens = []
else:
gens = gens.split()[1:1+int(r)] # ignore torsion struct and gens
gens = [pointPtoA(P) for P in gens]
line = '[' + ', '.join(['"'+N+cl+num+'"',ainvs,str(gens).replace(' ','')]) + ']'
paricurvesfile.write(line+'\n')
infile.close()
paricurvesfile.close()
def compare(Ncc1,Ncc2):
d = Integer(Ncc1[0])-Integer(Ncc2[0])
if d!=0:
return d
code1 = Ncc1[1]+Ncc1[2]
code2 = Ncc2[1]+Ncc2[2]
d = cmp_code(code1,code2)
return d
def merge_gens(infile1, infile2):
pre, suf = infile1.split(".")
infile1 = open(infile1)
infile2 = open(infile2)
allgensfile = open("mallgens."+suf, mode='w')
L1 = infile1.readline()
L2 = infile2.readline()
while len(L1)>0 and len(L2)>0:
N1,cl1,cu1,rest = L1.split(' ',3)
N2,cl2,cu2,rest = L2.split(' ',3)
if compare([N1,cl1,cu1],[N2,cl2,cu2])<0:
allgensfile.write(L1)
L1 = infile1.readline()
else:
allgensfile.write(L2)
L2 = infile2.readline()
while len(L1)>0:
allgensfile.write(L1)
L1 = infile1.readline()
while len(L2)>0:
allgensfile.write(L2)
L2 = infile2.readline()
infile1.close()
infile2.close()
allgensfile.close()
# Create alldegphi files from allcurves files:
def make_alldegphi(infilename, mode='w', verbose=False, prefix="t"):
infile = open(infilename)
pre, suf = infilename.split(".")
alldegphifile = open(prefix+"alldegphi."+suf, mode=mode)
for L in infile.readlines():
if verbose: print(L)
N, cl, num, ainvs, rest = L.split(' ',4)
if verbose: print(ainvs)
E = EllipticCurve(eval(ainvs))
try:
degphi = E.modular_degree()
except RuntimeError:
degphi = 0
# alldegphi
line = ' '.join([str(N),cl,str(num),shortstr(E),liststr(degphi)])
alldegphifile.write(line+'\n')
if verbose: print("alldegphifile: {}".format(line))
infile.close()
alldegphifile.close()
def check_degphi(infilename):
infile = open(infilename)
for L in infile.readlines():
N, cl, num, ainvs, d = L.split()
if int(N)==990 and cl=='h':
continue
d=int(d)
if int(num)==1:
d1=d
else:
if d1<d:
pass
else:
print("%s: d=%s but d1=%s (ratio %s)"%(N+cl+str(num),d,d1,d1//d))
infile.close()
# Create manin constant files from allcurves files:
#
# NB We assume that curve 1 in each class is optimal with constant 1
#
# Use this on a range where we have established that the optimal curve
# is #1. Otherwise the C++ program h1pperiods outputs a file
# opt_man.<range> which includes what can be deduced about optimality
# (without a full check) and also outputs Manin constants conditional
# on the optimal curve being #1.
# The infilename should be an allcurves file, e.g. run in an ecdata
# directory and use infilename=allcurves/allcurves.250000-259999. The
# part after the "." (here 250000-259999) will be used as suffix to
# the output file.
# Some classes may be output as "special": two curves in the class
# linked by a 2-isogeny with the first lattice having positive
# discriminant and the second Manin constant=2. In several cases this
# has been an indication that the wrong curve has been tagged as
# optimal.
def make_manin(infilename, mode='w', verbose=False, prefix=""):
infile = open(infilename)
pre, suf = infilename.split(".")
allmaninfile = open(prefix+"opt_man."+suf, mode=mode)
allisogfile = open("allisog/allisog."+suf)
last_class = ""
manins = []
area0 = 0 # else pyflakes objects
degrees = [] # else pyflakes objects
for L in infile.readlines():
N, cl, num, ainvs, rest = L.split(' ',4)
this_class = N+cl
num = int(num)
E = EllipticCurve(eval(ainvs))
lattice1 = None
if this_class == last_class:
deg = degrees[int(num)-1]
#assert ideg==deg
area = E.period_lattice().complex_area()
mc = round((deg*area/area0).sqrt())
# print("{}{}{}: ".format(N,cl,num))
# print("degree = {}".format(deg))
# print("area = {}".format(area))
# print("area ratio = {}".format(area/area0))
# print("c^2 = {}".format(deg*area/area0))
manins.append(mc)
if num==3:
lattice1 = None
elif not (num==2 and deg==2 and mc==2):
lattice1 = None
if lattice1:
print("Class {} is special".format(lattice1))
else: # start a new class
if manins and verbose: # else we're at the start
print("class {} has Manin constants {}".format(last_class,manins))
isogmat = allisogfile.readline().split()[-1]
isogmat = eval(isogmat)
degrees = isogmat[0]
if verbose:
print("class {}".format(this_class))
print("isogmat: {}".format(isogmat))
print("degrees: {}".format(isogmat))
area0 = E.period_lattice().complex_area()
manins = [1]
if num==1 and len(isogmat)==2 and isogmat[0][1]==2 and E.discriminant()>0:
lattice1 = this_class
last_class = this_class
# construct output line for this curve
#
# SPECIAL CASE 990h
#
if N==90 and cl=='h':
opt = str(int(num==3))
manins = [1,1,1,1]
else:
opt = str(int(num==1))
mc = str(manins[-1])
line = ' '.join([str(N),cl,str(num),shortstr(E),opt,mc])
allmaninfile.write(line+'\n')
if verbose: print("allmaninfile: {}".format(line))
# if int(N)>100:
# break
if manins and verbose: # else we're at the start
# This output line is the only reason we keep the list of all m.c.s
print("class {} has Manin constants {}".format(last_class,manins))
infile.close()
allmaninfile.close()
def make_opt_input(N):
"""Parse a file in optimality/ and produce an input file for
runh1firstx1 which runs h1first1.
Find lines containing "possible optimal curves", extract the
isogeny class label, convert iso class code to a number, and
output. One line is output for each level N, of the form
N i_1 i_2 ... i_k 0
where N is the level and i_1,...,i_k are the numbers (from 1) of
the newforms / isogeny classes where we do not know which curve is
optimal.
For example the input lines starting with 250010 are
250010b: c=1; optimal curve is E1
250010d: c=1; 3 possible optimal curves: E1 E2 E3
and produce the output line
250010 2 4 0
while the lines starting with 250020 are
250020b: c=1; optimal curve is E1
250020d: c=1; optimal curve is E1
and produce no output
"""
outfile = "optx.{0:02d}".format(N)
o = open(outfile, 'w')
n = 0
lastN = 0
for L in open("optimality/optimality.{0:02d}".format(N)):
if "possible" in L:
N, c, i = parse_cremona_label(L.split()[0][:-1])
if N==lastN:
o.write(" {}".format(1+class_to_int(c)))
else:
if lastN!=0:
o.write(" 0\n")
o.write("{} {}".format(N, 1+class_to_int(c)))
lastN = N
n += 1
o.write(" 0\n")
n += 1
o.close()
print("wrote {} lines to {}".format(n,outfile))
def check_sagedb(N1, N2, a4a6bound=100):
"""Sanity check that Sage's elliptic curve database contains all
curves [a1,a2,a3,a4,a6] with a1,a3 in [0,1], a2 in [-1,0,1], a4,a6
in [-100..100] and conductor in the given range.
Borrowed from Bill Allombert (who found a missing curve of
conductor 406598 this way).
"""
CDB = CremonaDatabase()
def CDB_curves(N):
return [c[0] for c in CDB.allcurves(N).values()]
Nrange = srange(N1,N2+1)
ncurves = 12*(2*a4a6bound+1)**2
print("Testing {} curves".format(ncurves))
n=0
for a1 in xrange(2):
for a2 in xrange(-1,2):
for a3 in xrange(2):
for a4 in xrange(-a4a6bound,a4a6bound+1):
for a6 in xrange(-a4a6bound,a4a6bound+1):
ai = [a1,a2,a3,a4,a6]
n += 1
if n%1000==0:
print("test #{}/{}".format(n,ncurves))
try:
E = EllipticCurve(ai).minimal_model()
except ArithmeticError: #singular curve
continue
N = E.conductor()
if not N in Nrange:
continue
if not list(E.ainvs()) in CDB_curves(N):
print("Missing N={}, ai={}".format(N,ai))
|