File: index.html

package info (click to toggle)
sagemath-database-cremona-elliptic-curves 20221013-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 5,252,172 kB
  • sloc: python: 3,515; makefile: 83; sh: 28
file content (1481 lines) | stat: -rw-r--r-- 72,963 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

   <meta name="GENERATOR" content="Mozilla/4.05 [en] (X11; I; OSF1 V4.0 alpha) [Netscape]">
<title>Elliptic Curve Data</title>
<link rel="shortcut icon" href="http://www.loria.fr/~zimmerma/records/ECM1.ico"><!-- credit to Phil Carmody-->
</head>
<script language="JavaScript">
<!--
function JumpToIt(frm) {
    var base_url = "https://raw.githubusercontent.com/JohnCremona/ecdata/master/"
    var file = frm.url.options[frm.url.selectedIndex].value
    if (file != "None") {
        window.open(base_url + file)
    }
}
function JumpToTorGro(frm) {
    var base_url = "https://raw.githubusercontent.com/JohnCremona/ecdata/master/growth/"
    var deg = frm.deg.options[frm.deg.selectedIndex].value
    var range = frm.range.options[frm.range.selectedIndex].value
    var newPage = base_url + deg + "/growth" + deg + "." + range
    //window.alert(newPage)
    if ((deg != "None") && (range != "None")) {
        window.open(newPage)
    }
}
//-->
</script>
<body bgcolor="#FFFFFF">

<center>
<h2>
Elliptic Curve Data<br>
by J. E. Cremona<br>
University of Warwick, U.K.</h2>
<p>
<i>
Updated <a href="release_notes.md">2020-11-27</a> (last major update 2019-07-22)
</i>
</p>
</center>

<hr width="100%">

<p>
This site is a front-end to the <tt>ecdata</tt> repository, hosted at
<a href="https://github.com/JohnCremona/ecdata">GitHub</a>, which
contains data files for (modular) elliptic curves over <b>Q</b>, in a
standard format to make them easily readable by other programs. For a
typeset version of the same data (with some extra data about local
reduction data) for conductors up to 1000, you can refer to the
book <a href="http://www.warwick.ac.uk/staff/J.E.Cremona/book/amec.html">Algorithms
for modular elliptic curves </a>, CUP 1992, second revised edition
1997.  See the book's web site for more information, including errata
for the current (2nd) edition, and errata to the first edition (not
maintained since the appearance of the second edition). The errata
lists include errors and omissions in the tables. The files here have
the corrected data in them.  As of 2000 the book is out of print, and
CUP have no plans to reprint it.
</p>

<p>
For a more sophisticated web interface to this data and much more, use
the <a href="http://www.lmfdb.org">LMFDB</a>.
</p>

<p>
The files correspond to tables 1-5 in the book (Table 5 is not in the
First Edition), with additional tables:
<ul>
<li>Table 6 gives the isogeny matrices between curves in each isogeny
class;
<li>Table 7 lists the integral points on each curve;
<li>Table 8 gives information on which curve is optimal, and the Manin
  constant;
<li>Table 9 gives information on the mod-<i>p</i> Galois
  representations attached to each curve;
<li>Table 10 gives information on the 2-adic Galois
  representations attached to each curve.
<li>Table 11 gives information on the growth of torsion in number
fields of small degree, for each curve.
</ul>
</p>

<p>
From September 2005, a new labelling scheme was introduced for isogeny
classes.  The old scheme started
A,B,...,Z,AA,BB,...,ZZ,AAA,BBB,... and had become unwieldy.  The new
scheme is a straight base 26 encoding with a=0, b=1 etc., with the
classes numbered from 0 and leading a's deleted:
a,b,...,z,ba,bb,...bz,ca,cb,... .  The change to lower case is to make
codes such as bb unambiguous between the old and new systems.  For
conductors less than 1728 the number of isogeny classes is at most 25
and the only change is from upper to lower case.
</p>

<p>
We give all curves in each isogeny class.  For all classes of curves
of conductor less than 400000, and many others, the first one listed
in each class is proved to be the so-called "optimal" or "strong Weil"
curve attached to each newform (referred to as optimal curves from now
on).  See the section <a href="#optimality">"Optimality and the Manin
constant"</a> below.  Some of the data is common to all curves in the
isogeny class.
</p>

<p>
The tables currently contain data for conductors up to <b>500000</b>.
</p>


<h3>Acknowledgements</h3>
<ul>
<li>The curves were computed via modular symbols, using the C++
library eclib (see https://github.com/JohnCremona/eclib), run on
machines in a variety of places, including clusters at Nottingham
(1999-2007, conductors up to 130000); Warwick (2011-2016, conductors
130000 to 400000); and the Google Computing Platform (15-22 July 2019,
conductors 400000-500000).  Thanks to the universities of Nttingham
and Warwick, and to the Simons Foundation for the GCP runs.

  Additional data is computed using a SageMath script to interface a
variety of software, including the following:
</li>
<li>
The modular degrees for conductors over 12000 were computed using Mark
Watkins's programs <tt>ec</tt> and <tt>sympow</tt>, via
<tt>SageMath</tt>.
</li>
<li>
Generators for many rank 1 curves were computed using either Magma's
<tt>HeegnerPoint</tt> function (written by Mark Watkins) or
GP's <tt>ellheegner</tt> function written by Christophe Delaunay and
Bill Allombert, based on the same ideas of Delaunay and Watkins.
</li>
<li>
The integral points for all curves were first computed using Sage in
an implementation due to Michael Mardaus, Tobias Nagel and JEC.  For
all curves we checked on 2018-12-19 whether these agree with Magma
(version V2.24-1): in 207 cases Magma found more integral points
(never fewer), and the lists here are now hoped to be complete.
</li>
<li>
The images of the mod <i>p</i> Galois representations were computed by
Andrew Sutherland.
</li>
<li>
The images of the 2-adic Galois representations were computed using a
Magma program provided by Jeremy Rouse.
</li>
<li>
The torsion growth data was computed by Enrique Gonzalez-Jimenez and
Filip Najman.
</li>
</ul>

<hr>

<h3>
SUMMARY TABLES
</h3>
<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
count/count.00000-09999
<option value="count/count.00000-09999">1-9999</option>
<option value="count/count.10000-19999">10000-19999</option>
<option value="count/count.20000-29999">20000-29999</option>
<option value="count/count.30000-39999">30000-39999</option>
<option value="count/count.40000-49999">40000-49999</option>
<option value="count/count.50000-59999">50000-59999</option>
<option value="count/count.60000-69999">60000-69999</option>
<option value="count/count.70000-79999">70000-79999</option>
<option value="count/count.80000-89999">80000-89999</option>
<option value="count/count.90000-99999">90000-99999</option>
<option value="count/count.100000-109999">100000-109999</option>
<option value="count/count.110000-119999">110000-119999</option>
<option value="count/count.120000-129999">120000-129999</option>
<option value="count/count.130000-139999">130000-139999</option>
<option value="count/count.140000-149999">140000-149999</option>
<option value="count/count.150000-159999">150000-159999</option>
<option value="count/count.160000-169999">160000-169999</option>
<option value="count/count.170000-179999">170000-179999</option>
<option value="count/count.180000-189999">180000-189999</option>
<option value="count/count.190000-199999">190000-199999</option>
<option value="count/count.200000-209999">200000-209999</option>
<option value="count/count.210000-219999">210000-219999</option>
<option value="count/count.220000-229999">220000-229999</option>
<option value="count/count.230000-239999">230000-239999</option>
<option value="count/count.240000-249999">240000-249999</option>
<option value="count/count.250000-259999">250000-259999</option>
<option value="count/count.260000-269999">260000-269999</option>
<option value="count/count.270000-279999">270000-279999</option>
<option value="count/count.280000-289999">280000-289999</option>
<option value="count/count.290000-299999">290000-299999</option>
<option value="count/count.300000-309999">300000-309999</option>
<option value="count/count.310000-319999">310000-319999</option>
<option value="count/count.320000-329999">320000-329999</option>
<option value="count/count.330000-339999">330000-339999</option>
<option value="count/count.340000-349999">340000-349999</option>
<option value="count/count.350000-359999">350000-359999</option>
<option value="count/count.360000-369999">360000-369999</option>
<option value="count/count.370000-379999">370000-379999</option>
<option value="count/count.380000-389999">380000-389999</option>
<option value="count/count.390000-399999">390000-399999</option>
<option value="count/count.400000-409999">400000-409999</option>
<option value="count/count.410000-419999">410000-419999</option>
<option value="count/count.420000-429999">420000-429999</option>
<option value="count/count.430000-439999">430000-439999</option>
<option value="count/count.440000-449999">440000-449999</option>
<option value="count/count.450000-459999">450000-459999</option>
<option value="count/count.460000-469999">460000-469999</option>
<option value="count/count.470000-479999">470000-479999</option>
<option value="count/count.480000-489999">480000-489999</option>
<option value="count/count.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
Lists of number of curves (up to isogeny) of each individual conductor
(each file is 10000 lines long).
</li>

<li> <a href="table.html">Table</a> showing number of curves of each
range of 10000 conductors, sorted by rank.
</li>

</ul>


<h3>
TABLE ONE: CURVES
</h3>

<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="allcurves/allcurves.00000-09999">1-9999</option>
<option value="allcurves/allcurves.10000-19999">10000-19999</option>
<option value="allcurves/allcurves.20000-29999">20000-29999</option>
<option value="allcurves/allcurves.30000-39999">30000-39999</option>
<option value="allcurves/allcurves.40000-49999">40000-49999</option>
<option value="allcurves/allcurves.50000-59999">50000-59999</option>
<option value="allcurves/allcurves.60000-69999">60000-69999</option>
<option value="allcurves/allcurves.70000-79999">70000-79999</option>
<option value="allcurves/allcurves.80000-89999">80000-89999</option>
<option value="allcurves/allcurves.90000-99999">90000-99999</option>
<option value="allcurves/allcurves.100000-109999">100000-109999</option>
<option value="allcurves/allcurves.110000-119999">110000-119999</option>
<option value="allcurves/allcurves.120000-129999">120000-129999</option>
<option value="allcurves/allcurves.130000-139999">130000-139999</option>
<option value="allcurves/allcurves.140000-149999">140000-149999</option>
<option value="allcurves/allcurves.150000-159999">150000-159999</option>
<option value="allcurves/allcurves.160000-169999">160000-169999</option>
<option value="allcurves/allcurves.170000-179999">170000-179999</option>
<option value="allcurves/allcurves.180000-189999">180000-189999</option>
<option value="allcurves/allcurves.190000-199999">190000-199999</option>
<option value="allcurves/allcurves.200000-209999">200000-209999</option>
<option value="allcurves/allcurves.210000-219999">210000-219999</option>
<option value="allcurves/allcurves.220000-229999">220000-229999</option>
<option value="allcurves/allcurves.230000-239999">230000-239999</option>
<option value="allcurves/allcurves.240000-249999">240000-249999</option>
<option value="allcurves/allcurves.250000-259999">250000-259999</option>
<option value="allcurves/allcurves.260000-269999">260000-269999</option>
<option value="allcurves/allcurves.270000-279999">270000-279999</option>
<option value="allcurves/allcurves.280000-289999">280000-289999</option>
<option value="allcurves/allcurves.290000-299999">290000-299999</option>
<option value="allcurves/allcurves.300000-309999">300000-309999</option>
<option value="allcurves/allcurves.310000-319999">310000-319999</option>
<option value="allcurves/allcurves.320000-329999">320000-329999</option>
<option value="allcurves/allcurves.330000-339999">330000-339999</option>
<option value="allcurves/allcurves.340000-349999">340000-349999</option>
<option value="allcurves/allcurves.350000-359999">350000-359999</option>
<option value="allcurves/allcurves.360000-369999">360000-369999</option>
<option value="allcurves/allcurves.370000-379999">370000-379999</option>
<option value="allcurves/allcurves.380000-389999">380000-389999</option>
<option value="allcurves/allcurves.390000-399999">390000-399999</option>
<option value="allcurves/allcurves.400000-409999">400000-409999</option>
<option value="allcurves/allcurves.410000-419999">410000-419999</option>
<option value="allcurves/allcurves.420000-429999">420000-429999</option>
<option value="allcurves/allcurves.430000-439999">430000-439999</option>
<option value="allcurves/allcurves.440000-449999">440000-449999</option>
<option value="allcurves/allcurves.450000-459999">450000-459999</option>
<option value="allcurves/allcurves.460000-469999">460000-469999</option>
<option value="allcurves/allcurves.470000-479999">470000-479999</option>
<option value="allcurves/allcurves.480000-489999">480000-489999</option>
<option value="allcurves/allcurves.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
<p>
One entry for each isomorphism class of curves, giving conductor N,
letter id for isogeny class, number of the curve in the class,
coefficients of minimal Weierstrass equation, rank r, order of torsion
subgroup |T|.  For all N up to 370000 the optimal
&Gamma;<sub>0</sub>(N) curve is the one labelled 1 (except for class
990h when it is the curve labelled 3). For N&gt;370000, this is
probably also true, but in some cases remains conditional on Stevens'
Conjecture (see the section <a href="#optimality">"Optimality and the
Manin constant"</a> below).
</p>

<p>
Data format with sample line:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th> <th>C</th> <th>#</th> <th>curve</th> <th>r</th> <th>t</th>
</tr>
<tr>
<td>2730</td> <td>bd</td> <td>1</td> <td>[1,0,0,-25725,1577457]</td>
<td>0</td> <td>12</td> </tr>
</tbody></table>
where:
</p><ul>
<li> <b>N</b> = conductor
</li><li> <b>C</b> = isogeny class (letter(s))
</li><li> <b>#</b> = number of curve in class = 1 (except for 990h3)
</li><li> <b>curve</b> = curve coefficients in format [a1,a2,a3,a4,a6]
</li><li> <b>r</b> = rank
</li><li> <b>t</b> = order of torsion
</li></ul>


<p>
Simple searches may be carried out with the unix/linux utility awk.
For example:
</p><p>
</p><ul>
<li>All curves with torsion of order 12:
<p align="LEFT"><tt>&nbsp;&nbsp;&nbsp;awk '$6==12' allcurves.* | sort -n
-k 1</tt></p>
</li><li>All curves with torsion of order 16:
<p align="LEFT"><tt>&nbsp;&nbsp;&nbsp;awk '$6==16' allcurves.*</tt></p>
</li><li>All curves of rank 3:
<p align="LEFT"><tt>&nbsp;&nbsp;&nbsp;awk '$5==3' allcurves.* | sort -n
-k 1 </tt></p>
</li></ul>

If it is desired to have the curve coefficients in five separate
fields with spaces as field separators, this can be achieved using
scripts such as this: <p align="LEFT"><tt>&nbsp;&nbsp;&nbsp;sed
's/[]\[,]/ /g' allcurves.00000-10000</tt></p>

<!--
<LI><A HREF="curves.1-1000.html">curves.1-1000.html</A>, experimental
format for a table in html.
-->

</li></ul>


<h3>
TABLE TWO: GENERATORS
</h3>

<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="allgens/allgens.00000-09999">1-9999</option>
<option value="allgens/allgens.10000-19999">10000-19999</option>
<option value="allgens/allgens.20000-29999">20000-29999</option>
<option value="allgens/allgens.30000-39999">30000-39999</option>
<option value="allgens/allgens.40000-49999">40000-49999</option>
<option value="allgens/allgens.50000-59999">50000-59999</option>
<option value="allgens/allgens.60000-69999">60000-69999</option>
<option value="allgens/allgens.70000-79999">70000-79999</option>
<option value="allgens/allgens.80000-89999">80000-89999</option>
<option value="allgens/allgens.90000-99999">90000-99999</option>
<option value="allgens/allgens.100000-109999">100000-109999</option>
<option value="allgens/allgens.110000-119999">110000-119999</option>
<option value="allgens/allgens.120000-129999">120000-129999</option>
<option value="allgens/allgens.130000-139999">130000-139999</option>
<option value="allgens/allgens.140000-149999">140000-149999</option>
<option value="allgens/allgens.150000-159999">150000-159999</option>
<option value="allgens/allgens.160000-169999">160000-169999</option>
<option value="allgens/allgens.170000-179999">170000-179999</option>
<option value="allgens/allgens.180000-189999">180000-189999</option>
<option value="allgens/allgens.190000-199999">190000-199999</option>
<option value="allgens/allgens.200000-209999">200000-209999</option>
<option value="allgens/allgens.210000-219999">210000-219999</option>
<option value="allgens/allgens.220000-229999">220000-229999</option>
<option value="allgens/allgens.230000-239999">230000-239999</option>
<option value="allgens/allgens.240000-249999">240000-249999</option>
<option value="allgens/allgens.250000-259999">250000-259999</option>
<option value="allgens/allgens.260000-269999">260000-269999</option>
<option value="allgens/allgens.270000-279999">270000-279999</option>
<option value="allgens/allgens.280000-289999">280000-289999</option>
<option value="allgens/allgens.290000-299999">290000-299999</option>
<option value="allgens/allgens.300000-309999">300000-309999</option>
<option value="allgens/allgens.310000-319999">310000-319999</option>
<option value="allgens/allgens.320000-329999">320000-329999</option>
<option value="allgens/allgens.330000-339999">330000-339999</option>
<option value="allgens/allgens.340000-349999">340000-349999</option>
<option value="allgens/allgens.350000-359999">350000-359999</option>
<option value="allgens/allgens.360000-369999">360000-369999</option>
<option value="allgens/allgens.370000-379999">370000-379999</option>
<option value="allgens/allgens.380000-389999">380000-389999</option>
<option value="allgens/allgens.390000-399999">390000-399999</option>
<option value="allgens/allgens.400000-409999">400000-409999</option>
<option value="allgens/allgens.410000-419999">410000-419999</option>
<option value="allgens/allgens.420000-429999">420000-429999</option>
<option value="allgens/allgens.430000-439999">430000-439999</option>
<option value="allgens/allgens.440000-449999">440000-449999</option>
<option value="allgens/allgens.450000-459999">450000-459999</option>
<option value="allgens/allgens.460000-469999">460000-469999</option>
<option value="allgens/allgens.470000-479999">470000-479999</option>
<option value="allgens/allgens.480000-489999">480000-489999</option>
<option value="allgens/allgens.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>

<p>
For every curve, generators are given for the Mordell group, in
projective coordinates. <b>N.B.</b> In
<b>all</b> cases I have checked that the point(s) given are indeed
generators.  Each entry consists of conductor N, isogeny class code,
number of curve in class, curve coefficients, rank r, torsion
structure (as a list of t structure constants for t=0,1 or 2, i.e. in
the form [] or [t] or [t1,t2]) and r+t points in projective
coordinates (torsion last). For example, the entry
</p>
<table cellspacing="20" border="1">
<tbody><tr>
<td>389</td><td>a</td><td>1</td><td>[0,1,1,-2,0]</td><td>2</td><td>[]</td><td>[0:0:1]</td><td>[1:0:1]
</td></tr>
</tbody></table>
<p>
means that curve 389a1 = [0,1,1,-2,0] has rank 2 and trivial torsion, with generators [0:0:1]=(0,0)
and [1:0:1]=(1,0), while the entry
</p>
<table cellspacing="2" border="1">
<tbody><tr>
<td>4602</td>
<td>a</td>
<td>1</td>
<td>[1,1,0,-37746035,-89296920339]</td>
<td>1</td>
<td>[2]</td>
<td>[175781888357266265777015693706802984972253428834450486976370&nbsp;:&nbsp;19575260230015313702261379022151675961965157108920263594545223&nbsp;:&nbsp;11451799510178287699130942513632433218384249076487302907]</td>
<td>[7094:-3547:1]</td>
</tr>
</tbody></table>
<p>
means that curve 4602a1 = [1,1,0,-37746035,-89296920339] has rank 1 with
generator
</p><pre>&nbsp;77985922458974949246858229195945103471590&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 19575260230015313702261379022151675961965157108920263594545223
[----------------------------------------- ,&nbsp;&nbsp;&nbsp;&nbsp;-------------------------------------------------------------- ]
&nbsp;&nbsp;&nbsp;&nbsp;2254020761884782243^2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2254020761884782243^3
</pre>
together with torsion of order 2 generated by [7094:-3547:1] = (7094,-3547).
<p>
<b>N.B.</b> From April 2011 the format of these files was changed to
include information about the torsion; there is therefore now a line
in the allgens files for every curve, not just those of positive rank.  The
files for N&lt;130000 were updated accordingly on 15/4/11.
</p>
</li></ul>


<h3>
TABLE THREE: HECKE EIGENVALUES
</h3>

<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="aplist/aplist.00000-09999">1-9999</option>
<option value="aplist/aplist.10000-19999">10000-19999</option>
<option value="aplist/aplist.20000-29999">20000-29999</option>
<option value="aplist/aplist.30000-39999">30000-39999</option>
<option value="aplist/aplist.40000-49999">40000-49999</option>
<option value="aplist/aplist.50000-59999">50000-59999</option>
<option value="aplist/aplist.60000-69999">60000-69999</option>
<option value="aplist/aplist.70000-79999">70000-79999</option>
<option value="aplist/aplist.80000-89999">80000-89999</option>
<option value="aplist/aplist.90000-99999">90000-99999</option>
<option value="aplist/aplist.100000-109999">100000-109999</option>
<option value="aplist/aplist.110000-119999">110000-119999</option>
<option value="aplist/aplist.120000-129999">120000-129999</option>
<option value="aplist/aplist.130000-139999">130000-139999</option>
<option value="aplist/aplist.140000-149999">140000-149999</option>
<option value="aplist/aplist.150000-159999">150000-159999</option>
<option value="aplist/aplist.160000-169999">160000-169999</option>
<option value="aplist/aplist.170000-179999">170000-179999</option>
<option value="aplist/aplist.180000-189999">180000-189999</option>
<option value="aplist/aplist.190000-199999">190000-199999</option>
<option value="aplist/aplist.200000-209999">200000-209999</option>
<option value="aplist/aplist.210000-219999">210000-219999</option>
<option value="aplist/aplist.220000-229999">220000-229999</option>
<option value="aplist/aplist.230000-239999">230000-239999</option>
<option value="aplist/aplist.240000-249999">240000-249999</option>
<option value="aplist/aplist.250000-259999">250000-259999</option>
<option value="aplist/aplist.260000-269999">260000-269999</option>
<option value="aplist/aplist.270000-279999">270000-279999</option>
<option value="aplist/aplist.280000-289999">280000-289999</option>
<option value="aplist/aplist.290000-299999">290000-299999</option>
<option value="aplist/aplist.300000-309999">300000-309999</option>
<option value="aplist/aplist.310000-319999">310000-319999</option>
<option value="aplist/aplist.320000-329999">320000-329999</option>
<option value="aplist/aplist.330000-339999">330000-339999</option>
<option value="aplist/aplist.340000-349999">340000-349999</option>
<option value="aplist/aplist.350000-359999">350000-359999</option>
<option value="aplist/aplist.360000-369999">360000-369999</option>
<option value="aplist/aplist.370000-379999">370000-379999</option>
<option value="aplist/aplist.380000-389999">380000-389999</option>
<option value="aplist/aplist.390000-399999">390000-399999</option>
<option value="aplist/aplist.400000-409999">400000-409999</option>
<option value="aplist/aplist.410000-419999">410000-419999</option>
<option value="aplist/aplist.420000-429999">420000-429999</option>
<option value="aplist/aplist.430000-439999">430000-439999</option>
<option value="aplist/aplist.440000-449999">440000-449999</option>
<option value="aplist/aplist.450000-459999">450000-459999</option>
<option value="aplist/aplist.460000-469999">460000-469999</option>
<option value="aplist/aplist.470000-479999">470000-479999</option>
<option value="aplist/aplist.480000-489999">480000-489999</option>
<option value="aplist/aplist.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
Hecke eigenvalues for p&lt;100 for each of the corresponding newforms for
&Gamma;<sub>0</sub>(N). When p|N the entry is simply "+" or "-" and is a W-eigenvalue,
as in Antwerp IV. When there are primes p|n with p&gt;100 the corresponding
eigenvalue(s) are in extra column(s), as in
<br>
<table cellspacing="10" border="1">
<tbody><tr>
<td>101</td><td>a</td><td>0</td><td>-2</td><td>-1</td><td>-2</td><td>-2</td><td>1</td><td>3</td><td>-5</td><td>1
</td><td>-4</td><td>-9</td><td>-2</td><td>8</td><td>-8</td><td>7</td><td>-2
</td><td>-14</td><td>4</td><td>2</td><td>13</td><td>8</td><td>-9</td><td>-4
</td><td>14</td><td>2</td><td>+(101)
</td></tr></tbody></table>
<br>
<table cellspacing="10" border="1">
<tbody><tr>
<td>10201</td><td>a</td><td>0</td><td>2</td><td>-1</td><td>2</td><td>2</td><td>1</td><td>3</td><td>-5</td><td>
1</td><td>4</td><td>-9</td><td>-2</td><td>-8</td><td>-8</td><td>7</td><td>2</td><td>14</td><td>-4</td><td>
-2</td><td>13</td><td>-8</td><td>-9</td><td>4</td><td>-14</td><td>2</td><td>+(101)</td></tr></tbody></table>
<br>
<table cellspacing="10" border="1">
<tbody><tr>
<td>19153</td><td>a</td><td>2</td><td>0</td><td>-1</td><td>0</td><td>-4</td><td>7</td><td>-3</td><td>-3</td><td>-6</td><td>3</td><td>8</td><td>-2</td><td>0</td><td>1</td><td>1</td><td>0</td><td>15</td><td>6</td><td>
-13</td><td>12</td><td>-2</td><td>2</td><td>9</td><td>-9</td><td>-10</td><td>+(107)</td><td>-(179)
</td></tr></tbody></table>
<br>
so the total number of fields is 27, 28 or 29 on each line (assuming
N&lt;1113121=101*103*107)
</li></ul>


<h3>
TABLE FOUR: BSD DATA and ANALYTIC ORDERS OF SHA
</h3>

<ul>
<li>
<a href="https://raw.githubusercontent.com/JohnCremona/ecdata/master/allbsd/bsd.1-1000">1-1000</a>
<p>
Birch--Swinnerton-Dyer data for the optimal
curve in each class, exactly as in the book.  Column headings:
Conductor, class id letter, rank, real period w, L^(r)(1)/r!,
regulator R, rational factor, S. Here the rational factor is
L^(r)(1)/wRr!; when r=0 this is exact and given as a pair of integers
(numerator denominator); when r&gt;0 it is approximate, but easily
recognizable. Lastly, S is the value of the order of the
Tate-Shafarevich group as predicted by B-SD (the "analytic order of
Sha"), given the previous data and also the local factors and
torsion. When r=0 this is exact; when r&gt;0 it is approximate, and was
computed to several places but to save space is just entered as
1.0. (S&gt;1 in only 4 cases, where S=4 or 9).
</p>

</li><li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="allbsd/allbsd.00000-09999">1-9999</option>
<option value="allbsd/allbsd.10000-19999">10000-19999</option>
<option value="allbsd/allbsd.20000-29999">20000-29999</option>
<option value="allbsd/allbsd.30000-39999">30000-39999</option>
<option value="allbsd/allbsd.40000-49999">40000-49999</option>
<option value="allbsd/allbsd.50000-59999">50000-59999</option>
<option value="allbsd/allbsd.60000-69999">60000-69999</option>
<option value="allbsd/allbsd.70000-79999">70000-79999</option>
<option value="allbsd/allbsd.80000-89999">80000-89999</option>
<option value="allbsd/allbsd.90000-99999">90000-99999</option>
<option value="allbsd/allbsd.100000-109999">100000-109999</option>
<option value="allbsd/allbsd.110000-119999">110000-119999</option>
<option value="allbsd/allbsd.120000-129999">120000-129999</option>
<option value="allbsd/allbsd.130000-139999">130000-139999</option>
<option value="allbsd/allbsd.140000-149999">140000-149999</option>
<option value="allbsd/allbsd.150000-159999">150000-159999</option>
<option value="allbsd/allbsd.160000-169999">160000-169999</option>
<option value="allbsd/allbsd.170000-179999">170000-179999</option>
<option value="allbsd/allbsd.180000-189999">180000-189999</option>
<option value="allbsd/allbsd.190000-199999">190000-199999</option>
<option value="allbsd/allbsd.200000-209999">200000-209999</option>
<option value="allbsd/allbsd.210000-219999">210000-219999</option>
<option value="allbsd/allbsd.220000-229999">220000-229999</option>
<option value="allbsd/allbsd.230000-239999">230000-239999</option>
<option value="allbsd/allbsd.240000-249999">240000-249999</option>
<option value="allbsd/allbsd.250000-259999">250000-259999</option>
<option value="allbsd/allbsd.260000-269999">260000-269999</option>
<option value="allbsd/allbsd.270000-279999">270000-279999</option>
<option value="allbsd/allbsd.280000-289999">280000-289999</option>
<option value="allbsd/allbsd.290000-299999">290000-299999</option>
<option value="allbsd/allbsd.300000-309999">300000-309999</option>
<option value="allbsd/allbsd.310000-319999">310000-319999</option>
<option value="allbsd/allbsd.320000-329999">320000-329999</option>
<option value="allbsd/allbsd.330000-339999">330000-339999</option>
<option value="allbsd/allbsd.340000-349999">340000-349999</option>
<option value="allbsd/allbsd.350000-359999">350000-359999</option>
<option value="allbsd/allbsd.360000-369999">360000-369999</option>
<option value="allbsd/allbsd.370000-379999">370000-379999</option>
<option value="allbsd/allbsd.380000-389999">380000-389999</option>
<option value="allbsd/allbsd.390000-399999">390000-399999</option>
<option value="allbsd/allbsd.400000-409999">400000-409999</option>
<option value="allbsd/allbsd.410000-419999">410000-419999</option>
<option value="allbsd/allbsd.420000-429999">420000-429999</option>
<option value="allbsd/allbsd.430000-439999">430000-439999</option>
<option value="allbsd/allbsd.440000-449999">440000-449999</option>
<option value="allbsd/allbsd.450000-459999">450000-459999</option>
<option value="allbsd/allbsd.460000-469999">460000-469999</option>
<option value="allbsd/allbsd.470000-479999">470000-479999</option>
<option value="allbsd/allbsd.480000-489999">480000-489999</option>
<option value="allbsd/allbsd.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
Same as previous but with data for all the curves (not only the
optimal ones) up to the current bound.   <br>
Data format with sample lines:

<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th><th>C</th><th>#</th><th>curve</th><th>r</th><th>t</th>
<th>cp</th><th>om</th><th>L</th><th>R</th><th>S</th>
</tr>

<tr>
<td>11</td> <td>a</td> <td>1</td> <td>[0,-1,1,-10,-20]</td> <td>0</td> <td>5</td>
<td>5</td> <td>1.269209304</td> <td>0.25384186</td> <td>1</td> <td>1</td>
</tr>

<tr>
<td>5077</td> <td>a</td> <td>1</td> <td>[0,0,1,-7,6]</td> <td>3</td> <td>1</td>
<td>1</td> <td>4.151687983</td> <td>1.73184990</td> <td> 0.41714355</td> <td>1.00000000</td>
</tr>
</tbody></table>
where:
<ul>
<li> <b>N</b> = conductor
</li><li> <b>C</b> = isogeny class (letter(s))
</li><li> <b>#</b> = number of curve in class
</li><li> <b>curve</b> = curve coefficients in format [a1,a2,a3,a4,a6]
</li><li> <b>r</b> = rank
</li><li> <b>t</b> = order of torsion
</li><li> <b>cp</b> = product of Tamagawa factors <i>c<sub>p</sub></i>
</li><li> <b>om</b> = real period
</li><li> <b>L</b> = <i>L<sup>(r)</sup>(E,1)</i>/<i>r</i>!.
</li><li> <b>R</b> = Regulator
</li><li> <b>S</b> = (Analytic) order of Sha.
</li></ul>
</li>
<br>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="allbigsha/allbigsha.00000-09999">1-9999</option>
<option value="allbigsha/allbigsha.10000-19999">10000-19999</option>
<option value="allbigsha/allbigsha.20000-29999">20000-29999</option>
<option value="allbigsha/allbigsha.30000-39999">30000-39999</option>
<option value="allbigsha/allbigsha.40000-49999">40000-49999</option>
<option value="allbigsha/allbigsha.50000-59999">50000-59999</option>
<option value="allbigsha/allbigsha.60000-69999">60000-69999</option>
<option value="allbigsha/allbigsha.70000-79999">70000-79999</option>
<option value="allbigsha/allbigsha.80000-89999">80000-89999</option>
<option value="allbigsha/allbigsha.90000-99999">90000-99999</option>
<option value="allbigsha/allbigsha.100000-109999">100000-109999</option>
<option value="allbigsha/allbigsha.110000-119999">110000-119999</option>
<option value="allbigsha/allbigsha.120000-129999">120000-129999</option>
<option value="allbigsha/allbigsha.130000-139999">130000-139999</option>
<option value="allbigsha/allbigsha.140000-149999">140000-149999</option>
<option value="allbigsha/allbigsha.150000-159999">150000-159999</option>
<option value="allbigsha/allbigsha.160000-169999">160000-169999</option>
<option value="allbigsha/allbigsha.170000-179999">170000-179999</option>
<option value="allbigsha/allbigsha.180000-189999">180000-189999</option>
<option value="allbigsha/allbigsha.190000-199999">190000-199999</option>
<option value="allbigsha/allbigsha.200000-209999">200000-209999</option>
<option value="allbigsha/allbigsha.210000-219999">210000-219999</option>
<option value="allbigsha/allbigsha.220000-229999">220000-229999</option>
<option value="allbigsha/allbigsha.230000-239999">230000-239999</option>
<option value="allbigsha/allbigsha.240000-249999">240000-249999</option>
<option value="allbigsha/allbigsha.250000-259999">250000-259999</option>
<option value="allbigsha/allbigsha.260000-269999">260000-269999</option>
<option value="allbigsha/allbigsha.270000-279999">270000-279999</option>
<option value="allbigsha/allbigsha.280000-289999">280000-289999</option>
<option value="allbigsha/allbigsha.290000-299999">290000-299999</option>
<option value="allbigsha/allbigsha.300000-309999">300000-309999</option>
<option value="allbigsha/allbigsha.310000-319999">310000-319999</option>
<option value="allbigsha/allbigsha.320000-329999">320000-329999</option>
<option value="allbigsha/allbigsha.330000-339999">330000-339999</option>
<option value="allbigsha/allbigsha.340000-349999">340000-349999</option>
<option value="allbigsha/allbigsha.350000-359999">350000-359999</option>
<option value="allbigsha/allbigsha.360000-369999">360000-369999</option>
<option value="allbigsha/allbigsha.370000-379999">370000-379999</option>
<option value="allbigsha/allbigsha.380000-389999">380000-389999</option>
<option value="allbigsha/allbigsha.390000-399999">390000-399999</option>
<option value="allbigsha/allbigsha.400000-409999">400000-409999</option>
<option value="allbigsha/allbigsha.410000-419999">410000-419999</option>
<option value="allbigsha/allbigsha.420000-429999">420000-429999</option>
<option value="allbigsha/allbigsha.430000-439999">430000-439999</option>
<option value="allbigsha/allbigsha.440000-449999">440000-449999</option>
<option value="allbigsha/allbigsha.450000-459999">450000-459999</option>
<option value="allbigsha/allbigsha.460000-469999">460000-469999</option>
<option value="allbigsha/allbigsha.470000-479999">470000-479999</option>
<option value="allbigsha/allbigsha.480000-489999">480000-489999</option>
<option value="allbigsha/allbigsha.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
Lists of the curves with non-trivial Tate-Shafarevich group, according
to the BSD conjecture; i.e., curves whose "analytic order of Sha" is
greater than 1.  The record (to conductor 410000) is 5625=75<sup>2</sup>
for 165066d3.
</li>
<br>
<li>
<a href="shas.html">shas.html</a><br>
A summary table of large Shas.  Note that up to conductor 500000
there are 243527 elliptic curves with non-trivial Sha, with ranks 0
(222922 curves), 1 (20563 curves), 2 (42 curves, all with
2-torsion).
</li></ul>


<h3>
TABLE FIVE: PARAMETRIZATION DEGREES
</h3>

<ul>
<li>
Optimal curves:
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="degphi/degphi.00000-09999">1-9999</option>
<option value="degphi/degphi.10000-19999">10000-19999</option>
<option value="degphi/degphi.20000-29999">20000-29999</option>
<option value="degphi/degphi.30000-39999">30000-39999</option>
<option value="degphi/degphi.40000-49999">40000-49999</option>
<option value="degphi/degphi.50000-59999">50000-59999</option>
<option value="degphi/degphi.60000-69999">60000-69999</option>
<option value="degphi/degphi.70000-79999">70000-79999</option>
<option value="degphi/degphi.80000-89999">80000-89999</option>
<option value="degphi/degphi.90000-99999">90000-99999</option>
<option value="degphi/degphi.100000-109999">100000-109999</option>
<option value="degphi/degphi.110000-119999">110000-119999</option>
<option value="degphi/degphi.120000-129999">120000-129999</option>
<option value="degphi/degphi.130000-139999">130000-139999</option>
<option value="degphi/degphi.140000-149999">140000-149999</option>
<option value="degphi/degphi.150000-159999">150000-159999</option>
<option value="degphi/degphi.160000-169999">160000-169999</option>
<option value="degphi/degphi.170000-179999">170000-179999</option>
<option value="degphi/degphi.180000-189999">180000-189999</option>
<option value="degphi/degphi.190000-199999">190000-199999</option>
<option value="degphi/degphi.200000-209999">200000-209999</option>
<option value="degphi/degphi.210000-219999">210000-219999</option>
<option value="degphi/degphi.220000-229999">220000-229999</option>
<option value="degphi/degphi.230000-239999">230000-239999</option>
<option value="degphi/degphi.240000-249999">240000-249999</option>
<option value="degphi/degphi.250000-259999">250000-259999</option>
<option value="degphi/degphi.260000-269999">260000-269999</option>
<option value="degphi/degphi.270000-279999">270000-279999</option>
<option value="degphi/degphi.280000-289999">280000-289999</option>
<option value="degphi/degphi.290000-299999">290000-299999</option>
<option value="degphi/degphi.300000-309999">300000-309999</option>
<option value="degphi/degphi.310000-319999">310000-319999</option>
<option value="degphi/degphi.320000-329999">320000-329999</option>
<option value="degphi/degphi.330000-339999">330000-339999</option>
<option value="degphi/degphi.340000-349999">340000-349999</option>
<option value="degphi/degphi.350000-359999">350000-359999</option>
<option value="degphi/degphi.360000-369999">360000-369999</option>
<option value="degphi/degphi.370000-379999">370000-379999</option>
<option value="degphi/degphi.380000-389999">380000-389999</option>
<option value="degphi/degphi.390000-399999">390000-399999</option>
<option value="degphi/degphi.400000-409999">400000-409999</option>
<option value="degphi/degphi.410000-419999">410000-419999</option>
<option value="degphi/degphi.420000-429999">420000-429999</option>
<option value="degphi/degphi.430000-439999">430000-439999</option>
<option value="degphi/degphi.440000-449999">440000-449999</option>
<option value="degphi/degphi.450000-459999">450000-459999</option>
<option value="degphi/degphi.460000-469999">460000-469999</option>
<option value="degphi/degphi.470000-479999">470000-479999</option>
<option value="degphi/degphi.480000-489999">480000-489999</option>
<option value="degphi/degphi.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
A table of the degree of the modular parametrizations of each optimal curve.
<br>
Data format with sample line:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th> <th>id</th> <th>degree</th> <th>primes</th> <th>curve</th>
</tr>
<tr>
<td>5077</td> <td>a 1</td> <td>1984</td> <td>{2,31}</td> <td>[0,0,1,-7,6]</td>
</tr></tbody></table>
where "primes" is the set of primes dividing the degree.
</li>
<br>
<li>
All curves:
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="alldegphi/alldegphi.00000-09999">1-9999</option>
<option value="alldegphi/alldegphi.10000-19999">10000-19999</option>
<option value="alldegphi/alldegphi.20000-29999">20000-29999</option>
<option value="alldegphi/alldegphi.30000-39999">30000-39999</option>
<option value="alldegphi/alldegphi.40000-49999">40000-49999</option>
<option value="alldegphi/alldegphi.50000-59999">50000-59999</option>
<option value="alldegphi/alldegphi.60000-69999">60000-69999</option>
<option value="alldegphi/alldegphi.70000-79999">70000-79999</option>
<option value="alldegphi/alldegphi.80000-89999">80000-89999</option>
<option value="alldegphi/alldegphi.90000-99999">90000-99999</option>
<option value="alldegphi/alldegphi.100000-109999">100000-109999</option>
<option value="alldegphi/alldegphi.110000-119999">110000-119999</option>
<option value="alldegphi/alldegphi.120000-129999">120000-129999</option>
<option value="alldegphi/alldegphi.130000-139999">130000-139999</option>
<option value="alldegphi/alldegphi.140000-149999">140000-149999</option>
<option value="alldegphi/alldegphi.150000-159999">150000-159999</option>
<option value="alldegphi/alldegphi.160000-169999">160000-169999</option>
<option value="alldegphi/alldegphi.170000-179999">170000-179999</option>
<option value="alldegphi/alldegphi.180000-189999">180000-189999</option>
<option value="alldegphi/alldegphi.190000-199999">190000-199999</option>
<option value="alldegphi/alldegphi.200000-209999">200000-209999</option>
<option value="alldegphi/alldegphi.210000-219999">210000-219999</option>
<option value="alldegphi/alldegphi.220000-229999">220000-229999</option>
<option value="alldegphi/alldegphi.230000-239999">230000-239999</option>
<option value="alldegphi/alldegphi.240000-249999">240000-249999</option>
<option value="alldegphi/alldegphi.250000-259999">250000-259999</option>
<option value="alldegphi/alldegphi.260000-269999">260000-269999</option>
<option value="alldegphi/alldegphi.270000-279999">270000-279999</option>
<option value="alldegphi/alldegphi.280000-289999">280000-289999</option>
<option value="alldegphi/alldegphi.290000-299999">290000-299999</option>
<option value="alldegphi/alldegphi.300000-309999">300000-309999</option>
<option value="alldegphi/alldegphi.310000-319999">310000-319999</option>
<option value="alldegphi/alldegphi.320000-329999">320000-329999</option>
<option value="alldegphi/alldegphi.330000-339999">330000-339999</option>
<option value="alldegphi/alldegphi.340000-349999">340000-349999</option>
<option value="alldegphi/alldegphi.350000-359999">350000-359999</option>
<option value="alldegphi/alldegphi.360000-369999">360000-369999</option>
<option value="alldegphi/alldegphi.370000-379999">370000-379999</option>
<option value="alldegphi/alldegphi.380000-389999">380000-389999</option>
<option value="alldegphi/alldegphi.390000-399999">390000-399999</option>
<option value="alldegphi/alldegphi.400000-409999">400000-409999</option>
<option value="alldegphi/alldegphi.410000-419999">410000-419999</option>
<option value="alldegphi/alldegphi.420000-429999">420000-429999</option>
<option value="alldegphi/alldegphi.430000-439999">430000-439999</option>
<option value="alldegphi/alldegphi.440000-449999">440000-449999</option>
<option value="alldegphi/alldegphi.450000-459999">450000-459999</option>
<option value="alldegphi/alldegphi.460000-469999">460000-469999</option>
<option value="alldegphi/alldegphi.470000-479999">470000-479999</option>
<option value="alldegphi/alldegphi.480000-489999">480000-489999</option>
<option value="alldegphi/alldegphi.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
A table of the degree of the modular parametrizations of every curve.
<br>
Data format with sample line:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th> <th>id</th> <th>#</th> <th>curve</th> <th>degree</th>
</tr>
<tr>
<td>11</td> <td>a</td> <td>1</td> <td>[0,-1,1,-10,-20]</td> <td> 1</td>
</tr>
<tr>
<td>11</td> <td>a</td> <td>2</td> <td>[0,-1,1,-7820,-263580]</td> <td> 5</td>
</tr>
<tr>
<td>11</td> <td>a</td> <td>3</td> <td>[0,-1,1,0,0]</td> <td> 5</td>
</tr></tbody></table>
</li>

</ul>

<h3>
TABLE SIX: ISOGENY MATRICES
</h3>

<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="allisog/allisog.00000-09999">1-9999</option>
<option value="allisog/allisog.10000-19999">10000-19999</option>
<option value="allisog/allisog.20000-29999">20000-29999</option>
<option value="allisog/allisog.30000-39999">30000-39999</option>
<option value="allisog/allisog.40000-49999">40000-49999</option>
<option value="allisog/allisog.50000-59999">50000-59999</option>
<option value="allisog/allisog.60000-69999">60000-69999</option>
<option value="allisog/allisog.70000-79999">70000-79999</option>
<option value="allisog/allisog.80000-89999">80000-89999</option>
<option value="allisog/allisog.90000-99999">90000-99999</option>
<option value="allisog/allisog.100000-109999">100000-109999</option>
<option value="allisog/allisog.110000-119999">110000-119999</option>
<option value="allisog/allisog.120000-129999">120000-129999</option>
<option value="allisog/allisog.130000-139999">130000-139999</option>
<option value="allisog/allisog.140000-149999">140000-149999</option>
<option value="allisog/allisog.150000-159999">150000-159999</option>
<option value="allisog/allisog.160000-169999">160000-169999</option>
<option value="allisog/allisog.170000-179999">170000-179999</option>
<option value="allisog/allisog.180000-189999">180000-189999</option>
<option value="allisog/allisog.190000-199999">190000-199999</option>
<option value="allisog/allisog.200000-209999">200000-209999</option>
<option value="allisog/allisog.210000-219999">210000-219999</option>
<option value="allisog/allisog.220000-229999">220000-229999</option>
<option value="allisog/allisog.240000-249999">240000-249999</option>
<option value="allisog/allisog.250000-259999">250000-259999</option>
<option value="allisog/allisog.260000-269999">260000-269999</option>
<option value="allisog/allisog.270000-279999">270000-279999</option>
<option value="allisog/allisog.280000-289999">280000-289999</option>
<option value="allisog/allisog.290000-299999">290000-299999</option>
<option value="allisog/allisog.300000-309999">300000-309999</option>
<option value="allisog/allisog.310000-319999">310000-319999</option>
<option value="allisog/allisog.320000-329999">320000-329999</option>
<option value="allisog/allisog.330000-339999">330000-339999</option>
<option value="allisog/allisog.340000-349999">340000-349999</option>
<option value="allisog/allisog.350000-359999">350000-359999</option>
<option value="allisog/allisog.360000-369999">360000-369999</option>
<option value="allisog/allisog.370000-379999">370000-379999</option>
<option value="allisog/allisog.380000-389999">380000-389999</option>
<option value="allisog/allisog.390000-399999">390000-399999</option>
<option value="allisog/allisog.400000-409999">400000-409999</option>
<option value="allisog/allisog.410000-419999">410000-419999</option>
<option value="allisog/allisog.420000-429999">420000-429999</option>
<option value="allisog/allisog.430000-439999">430000-439999</option>
<option value="allisog/allisog.440000-449999">440000-449999</option>
<option value="allisog/allisog.450000-459999">450000-459999</option>
<option value="allisog/allisog.460000-469999">460000-469999</option>
<option value="allisog/allisog.470000-479999">470000-479999</option>
<option value="allisog/allisog.480000-489999">480000-489999</option>
<option value="allisog/allisog.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
A table giving the degrees of isogenies within each isogeny class.   One row
for each isogeny class. 

<br>
Data format with sample line:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th> <th>class</th> <th>#</th> <th>[a1,a2,a3,a4,a6]</th>
<th>curves in the class</th>
<th>isogeny matrix</th>
</tr>
<tr>
<td>14</td> <td>a</td> <td>1</td> <td>[1,0,1,4,-6]</td>
<td>[[1,0,1,4,-6],[1,0,1,-36,-70],[1,0,1,-171,-874],[1,0,1,-1,0],[1,0,1,-2731,-55146],[1,0,1,-11,12]]</td>
<td>[[1,2,3,3,6,6],[2,1,6,6,3,3],[3,6,1,9,2,18],[3,6,9,1,18,2],[6,3,2,18,1,9],[6,3,18,2,9,1]]</td>
</tr></tbody></table>
where the isogeny matrix has (<i>i</i>,<i>j</i>) entry <i>d</i> when
the there is a cyclic isogeny of degree <i>d</i> from curve <i>i</i>
to curve <i>j</i>.
</li></ul>

<h3>
TABLE SEVEN: INTEGRAL POINTS
</h3>

<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="intpts/intpts.00000-09999">1-9999</option>
<option value="intpts/intpts.10000-19999">10000-19999</option>
<option value="intpts/intpts.20000-29999">20000-29999</option>
<option value="intpts/intpts.30000-39999">30000-39999</option>
<option value="intpts/intpts.40000-49999">40000-49999</option>
<option value="intpts/intpts.50000-59999">50000-59999</option>
<option value="intpts/intpts.60000-69999">60000-69999</option>
<option value="intpts/intpts.70000-79999">70000-79999</option>
<option value="intpts/intpts.80000-89999">80000-89999</option>
<option value="intpts/intpts.90000-99999">90000-99999</option>
<option value="intpts/intpts.100000-109999">100000-109999</option>
<option value="intpts/intpts.110000-119999">110000-119999</option>
<option value="intpts/intpts.120000-129999">120000-129999</option>
<option value="intpts/intpts.130000-139999">130000-139999</option>
<option value="intpts/intpts.140000-149999">140000-149999</option>
<option value="intpts/intpts.150000-159999">150000-159999</option>
<option value="intpts/intpts.160000-169999">160000-169999</option>
<option value="intpts/intpts.170000-179999">170000-179999</option>
<option value="intpts/intpts.180000-189999">180000-189999</option>
<option value="intpts/intpts.190000-199999">190000-199999</option>
<option value="intpts/intpts.200000-209999">200000-209999</option>
<option value="intpts/intpts.210000-219999">210000-219999</option>
<option value="intpts/intpts.220000-229999">220000-229999</option>
<option value="intpts/intpts.230000-239999">230000-239999</option>
<option value="intpts/intpts.240000-249999">240000-249999</option>
<option value="intpts/intpts.250000-259999">250000-259999</option>
<option value="intpts/intpts.260000-269999">260000-269999</option>
<option value="intpts/intpts.270000-279999">270000-279999</option>
<option value="intpts/intpts.280000-289999">280000-289999</option>
<option value="intpts/intpts.290000-299999">290000-299999</option>
<option value="intpts/intpts.300000-309999">300000-309999</option>
<option value="intpts/intpts.310000-319999">310000-319999</option>
<option value="intpts/intpts.320000-329999">320000-329999</option>
<option value="intpts/intpts.330000-339999">330000-339999</option>
<option value="intpts/intpts.340000-349999">340000-349999</option>
<option value="intpts/intpts.350000-359999">350000-359999</option>
<option value="intpts/intpts.360000-369999">360000-369999</option>
<option value="intpts/intpts.370000-379999">370000-379999</option>
<option value="intpts/intpts.380000-389999">380000-389999</option>
<option value="intpts/intpts.390000-399999">390000-399999</option>
<option value="intpts/intpts.400000-409999">400000-409999</option>
<option value="intpts/intpts.410000-419999">410000-419999</option>
<option value="intpts/intpts.420000-429999">420000-429999</option>
<option value="intpts/intpts.430000-439999">430000-439999</option>
<option value="intpts/intpts.440000-449999">440000-449999</option>
<option value="intpts/intpts.450000-459999">450000-459999</option>
<option value="intpts/intpts.460000-469999">460000-469999</option>
<option value="intpts/intpts.470000-479999">470000-479999</option>
<option value="intpts/intpts.480000-489999">480000-489999</option>
<option value="intpts/intpts.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
A table giving the x-coordinates of all integral points on all curves.

<br>
Data format with sample line:
<table cellspacing="10" border="1">
<tbody><tr>
<th>Curve</th> <th>[a1,a2,a3,a4,a6]</th>
<th align="left">x-coordinates of integral points</th>
</tr>
<tr>

<td>114114bz1</td>
<td>[1,0,0,-858375,380956041]</td>
<td>[-1098,-1042,-990,-954,-756,-522,-426,-72,36,102,270,354,414,498,596,630,726,918,960,1334,1590,1818,1974,2702,3006,3690,5250,6966,8352,9702,18054,24438,31848,48150,119988,295254,913014]</td>
</tr></tbody></table>
</li></ul>

<h3>
<a NAME="optimality">TABLE EIGHT: OPTIMALITY AND THE MANIN CONSTANT</a>
</h3>

<ul>
<li>
<p>
For isogeny classes of curves of conductor greater than 400000, we have
not yet determined in all cases which curve in each class is optimal.
However, in all cases we have verified that the Manin constant of the
optimal curve is equal to 1 (as it is conjectured to be for every
optimal curve), even in cases where we do not know for sure which
curve is optimal.
</p>
<p>
While we can (using our modular symbols programs) determine the
optimal curve in any individual case, this takes a long time to do for
all remaining cases; this is ongoing.  For more details on this, see
my Appendix to the paper "The Manin Constant" by Amod Agashe, Ken
Ribet and William Stein [Pure and Applied Mathematics Quarterly,
Vol. 2 no.2 (2006), pp. 617-636.]
and <a href="manin.txt">these
detailed notes</a> with full results for all conductors to 500000.
These updated results include the proof that Manin's constant is 1 in
all cases, together with a list of which curves in the class might be
optimal, given the incomplete modular symbol computations carried out
to date.  Note, however, that it follows from computation of the
modular degrees of all curves in the class (which computation is
conditional on Stevens's conjecture) that the optimal curve is always
the first curve listed.
</p>
<p>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="opt_man/opt_man.00000-09999">00000-09999</option>
<option value="opt_man/opt_man.10000-19999">10000-19999</option>
<option value="opt_man/opt_man.20000-29999">20000-29999</option>
<option value="opt_man/opt_man.30000-39999">30000-39999</option>
<option value="opt_man/opt_man.40000-49999">40000-49999</option>
<option value="opt_man/opt_man.50000-59999">50000-59999</option>
<option value="opt_man/opt_man.60000-69999">60000-69999</option>
<option value="opt_man/opt_man.70000-79999">70000-79999</option>
<option value="opt_man/opt_man.80000-89999">80000-89999</option>
<option value="opt_man/opt_man.90000-99999">90000-99999</option>
<option value="opt_man/opt_man.100000-109999">100000-109999</option>
<option value="opt_man/opt_man.110000-119999">110000-119999</option>
<option value="opt_man/opt_man.120000-129999">120000-129999</option>
<option value="opt_man/opt_man.130000-139999">130000-139999</option>
<option value="opt_man/opt_man.140000-149999">140000-149999</option>
<option value="opt_man/opt_man.150000-159999">150000-159999</option>
<option value="opt_man/opt_man.160000-169999">160000-169999</option>
<option value="opt_man/opt_man.170000-179999">170000-179999</option>
<option value="opt_man/opt_man.180000-189999">180000-189999</option>
<option value="opt_man/opt_man.190000-199999">190000-199999</option>
<option value="opt_man/opt_man.200000-209999">200000-209999</option>
<option value="opt_man/opt_man.210000-219999">210000-219999</option>
<option value="opt_man/opt_man.220000-229999">220000-229999</option>
<option value="opt_man/opt_man.230000-239999">230000-239999</option>
<option value="opt_man/opt_man.240000-249999">240000-249999</option>
<option value="opt_man/opt_man.250000-259999">250000-259999</option>
<option value="opt_man/opt_man.260000-269999">260000-269999</option>
<option value="opt_man/opt_man.270000-279999">270000-279999</option>
<option value="opt_man/opt_man.280000-289999">280000-289999</option>
<option value="opt_man/opt_man.290000-299999">290000-299999</option>
<option value="opt_man/opt_man.300000-309999">300000-309999</option>
<option value="opt_man/opt_man.310000-319999">310000-319999</option>
<option value="opt_man/opt_man.320000-329999">320000-329999</option>
<option value="opt_man/opt_man.330000-339999">330000-339999</option>
<option value="opt_man/opt_man.340000-349999">340000-349999</option>
<option value="opt_man/opt_man.350000-359999">350000-359999</option>
<option value="opt_man/opt_man.360000-369999">360000-369999</option>
<option value="opt_man/opt_man.370000-379999">370000-379999</option>
<option value="opt_man/opt_man.380000-389999">380000-389999</option>
<option value="opt_man/opt_man.390000-399999">390000-399999</option>
<option value="opt_man/opt_man.400000-409999">400000-409999</option>
<option value="opt_man/opt_man.410000-419999">410000-419999</option>
<option value="opt_man/opt_man.420000-429999">420000-429999</option>
<option value="opt_man/opt_man.430000-439999">430000-439999</option>
<option value="opt_man/opt_man.440000-449999">440000-449999</option>
<option value="opt_man/opt_man.450000-459999">450000-459999</option>
<option value="opt_man/opt_man.460000-469999">460000-469999</option>
<option value="opt_man/opt_man.470000-479999">470000-479999</option>
<option value="opt_man/opt_man.480000-489999">480000-489999</option>
<option value="opt_man/opt_man.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
Table of results known regarding optimality and Manin constant in all
isogeny classes.  For conductors greater than 400000, the values of
the Manin constant are conditional on the first curve in the class
being optimal.
<br>
Data format with sample lines:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th> <th>class</th> <th>#</th> <th>[a1,a2,a3,a4,a6]</th> <th>Optimality code</th> <th>Manin constant</th>
</tr>
<tr><td>11</td><td>a</td><td>1</td><td>[0,-1,1,-10,-20]</td><td>1</td><td>1</td></tr>
<tr><td>11</td><td>a</td><td>2</td><td>[0,-1,1,-7820,-263580]</td><td>0</td><td>1</td></tr>
<tr><td>11</td><td>a</td><td>3</td><td>[0,-1,1,0,0]</td><td>0</td><td>5</td></tr>
<tr><td>499992</td><td>a</td><td>1</td><td>[0,-1,0,4481,148204]</td><td>3</td><td>1</td></tr>
<tr><td>499992</td><td>a</td><td>2</td><td>[0,-1,0,-29964,1526004]</td><td>3</td><td>1</td></tr>
<tr><td>499992</td><td>a</td><td>3</td><td>[0,-1,0,-446624,115024188]</td><td>3</td><td>1</td></tr>
<tr><td>499992</td><td>a</td><td>4</td><td>[0,-1,0,-164424,-24344100]</td><td>0</td><td>1</tr>
</tbody></table>
</p>
<p>
The optimality code is 0 for "not optimal", 1 for "optimal"
and <i>n</i> for "one of <i>n</i> possibly optimal curves in this
isogeny class".  In the case of isogeny class 11a above, out of the
three curves in the class, the optimal curve is 11a1 (which is
$X_0(11)$), the first two curves have Manin constant 1, while the
curve 11a3 (which is $X_1(11)$) has Manin constant equal to 5.  In the
class 499992a, out of four curves, the optimal curve is certainly one
of the first 3; and if the optimal curve is indeed 499992a1 then all
the Manin constants are equal to 1.
</p>
</li>
</ul>

<h3>
TABLE NINE: IMAGES OF GALOIS REPRESENTATIONS
</h3>

<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="galrep/galrep.00000-09999">1-9999</option>
<option value="galrep/galrep.10000-19999">10000-19999</option>
<option value="galrep/galrep.20000-29999">20000-29999</option>
<option value="galrep/galrep.30000-39999">30000-39999</option>
<option value="galrep/galrep.40000-49999">40000-49999</option>
<option value="galrep/galrep.50000-59999">50000-59999</option>
<option value="galrep/galrep.60000-69999">60000-69999</option>
<option value="galrep/galrep.70000-79999">70000-79999</option>
<option value="galrep/galrep.80000-89999">80000-89999</option>
<option value="galrep/galrep.90000-99999">90000-99999</option>
<option value="galrep/galrep.100000-109999">100000-109999</option>
<option value="galrep/galrep.110000-119999">110000-119999</option>
<option value="galrep/galrep.120000-129999">120000-129999</option>
<option value="galrep/galrep.130000-139999">130000-139999</option>
<option value="galrep/galrep.140000-149999">140000-149999</option>
<option value="galrep/galrep.150000-159999">150000-159999</option>
<option value="galrep/galrep.160000-169999">160000-169999</option>
<option value="galrep/galrep.170000-179999">170000-179999</option>
<option value="galrep/galrep.180000-189999">180000-189999</option>
<option value="galrep/galrep.190000-199999">190000-199999</option>
<option value="galrep/galrep.200000-209999">200000-209999</option>
<option value="galrep/galrep.210000-219999">210000-219999</option>
<option value="galrep/galrep.220000-229999">220000-229999</option>
<option value="galrep/galrep.230000-239999">230000-239999</option>
<option value="galrep/galrep.240000-249999">240000-249999</option>
<option value="galrep/galrep.250000-259999">250000-259999</option>
<option value="galrep/galrep.260000-269999">260000-269999</option>
<option value="galrep/galrep.270000-279999">270000-279999</option>
<option value="galrep/galrep.280000-289999">280000-289999</option>
<option value="galrep/galrep.290000-299999">290000-299999</option>
<option value="galrep/galrep.300000-309999">300000-309999</option>
<option value="galrep/galrep.310000-319999">310000-319999</option>
<option value="galrep/galrep.320000-329999">320000-329999</option>
<option value="galrep/galrep.330000-339999">330000-339999</option>
<option value="galrep/galrep.340000-349999">340000-349999</option>
<option value="galrep/galrep.350000-359999">350000-359999</option>
<option value="galrep/galrep.360000-369999">360000-369999</option>
<option value="galrep/galrep.370000-379999">370000-379999</option>
<option value="galrep/galrep.380000-389999">380000-389999</option>
<option value="galrep/galrep.390000-399999">390000-399999</option>
<option value="galrep/galrep.400000-409999">400000-409999</option>
<option value="galrep/galrep.410000-419999">410000-419999</option>
<option value="galrep/galrep.420000-429999">420000-429999</option>
<option value="galrep/galrep.430000-439999">430000-439999</option>
<option value="galrep/galrep.440000-449999">440000-449999</option>
<option value="galrep/galrep.450000-459999">450000-459999</option>
<option value="galrep/galrep.460000-469999">460000-469999</option>
<option value="galrep/galrep.470000-479999">470000-479999</option>
<option value="galrep/galrep.480000-489999">480000-489999</option>
<option value="galrep/galrep.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
A table giving the for each elliptic curve the primes <i>p</i> for
which the mod-<i>p</i> Galois representation is not maximal, as
computed by Andrew Sutherland, together with a code identifying the
image (as a subgroup of GL(2,<i>p</i>), up to conjugation).  For
curves with CM the representation is never surjective and the image is
shown when it is not maximal, where maximal means as large as possible
given the constraints imposed by the endomorphism ring of E.  For
curves without CM, the representation is surjective for all but
finitely many primes (Serre) and is conjectured to be surjective
for <i>p</i>&gt;37, but this was only checked for 37&lt<i>p</i>&lt80.

<br>
Data format with sample lines:
<table cellspacing="10" border="1">
<tbody><tr>
<th>Curve</th><th align="left">list of non-surjective images</th>
</tr>
<tr>
<td>11a1</td><td>5Cs.1.1</td>
</tr>
<tr>
<td>27a1</td><td>3Cs.1.1</td>
</tr>
<tr>
<td>37a1</td><td>&nbsp;</td>
</tr>
</tbody></table>
</li></ul>

<h3>
TABLE TEN: IMAGES OF TWO-ADIC GALOIS REPRESENTATION
</h3>

<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="2adic/2adic.00000-09999">1-9999</option>
<option value="2adic/2adic.10000-19999">10000-19999</option>
<option value="2adic/2adic.20000-29999">20000-29999</option>
<option value="2adic/2adic.30000-39999">30000-39999</option>
<option value="2adic/2adic.40000-49999">40000-49999</option>
<option value="2adic/2adic.50000-59999">50000-59999</option>
<option value="2adic/2adic.60000-69999">60000-69999</option>
<option value="2adic/2adic.70000-79999">70000-79999</option>
<option value="2adic/2adic.80000-89999">80000-89999</option>
<option value="2adic/2adic.90000-99999">90000-99999</option>
<option value="2adic/2adic.100000-109999">100000-109999</option>
<option value="2adic/2adic.110000-119999">110000-119999</option>
<option value="2adic/2adic.120000-129999">120000-129999</option>
<option value="2adic/2adic.130000-139999">130000-139999</option>
<option value="2adic/2adic.140000-149999">140000-149999</option>
<option value="2adic/2adic.150000-159999">150000-159999</option>
<option value="2adic/2adic.160000-169999">160000-169999</option>
<option value="2adic/2adic.170000-179999">170000-179999</option>
<option value="2adic/2adic.180000-189999">180000-189999</option>
<option value="2adic/2adic.190000-199999">190000-199999</option>
<option value="2adic/2adic.200000-209999">200000-209999</option>
<option value="2adic/2adic.210000-219999">210000-219999</option>
<option value="2adic/2adic.220000-229999">220000-229999</option>
<option value="2adic/2adic.230000-239999">230000-239999</option>
<option value="2adic/2adic.240000-249999">240000-249999</option>
<option value="2adic/2adic.250000-259999">250000-259999</option>
<option value="2adic/2adic.260000-269999">260000-269999</option>
<option value="2adic/2adic.270000-279999">270000-279999</option>
<option value="2adic/2adic.280000-289999">280000-289999</option>
<option value="2adic/2adic.290000-299999">290000-299999</option>
<option value="2adic/2adic.300000-309999">300000-309999</option>
<option value="2adic/2adic.310000-319999">310000-319999</option>
<option value="2adic/2adic.320000-329999">320000-329999</option>
<option value="2adic/2adic.330000-339999">330000-339999</option>
<option value="2adic/2adic.340000-349999">340000-349999</option>
<option value="2adic/2adic.350000-359999">350000-359999</option>
<option value="2adic/2adic.360000-369999">360000-369999</option>
<option value="2adic/2adic.370000-379999">370000-379999</option>
<option value="2adic/2adic.380000-389999">380000-389999</option>
<option value="2adic/2adic.390000-399999">390000-399999</option>
<option value="2adic/2adic.400000-409999">400000-409999</option>
<option value="2adic/2adic.410000-419999">410000-419999</option>
<option value="2adic/2adic.420000-429999">420000-429999</option>
<option value="2adic/2adic.430000-439999">430000-439999</option>
<option value="2adic/2adic.440000-449999">440000-449999</option>
<option value="2adic/2adic.450000-459999">450000-459999</option>
<option value="2adic/2adic.460000-469999">460000-469999</option>
<option value="2adic/2adic.470000-479999">470000-479999</option>
<option value="2adic/2adic.480000-489999">480000-489999</option>
<option value="2adic/2adic.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
A table giving, for each elliptic curve without CM, the image of the
2-adic Galois representation, as computed using a Magma program
provided by Jeremy Rouse and David Zureick Brown.

There are 1208 possible images.  The index is the index of the image
in GL(2,Z_2).  The level is the largest n such that the image contains
the kernel of reduction modulo 2^n.  The generators are generating
matrices for the image modulo the level.  Note that the action of
Galois is on the right, so points in E[2^r] are represented as row
vectors v and if M is in GL_2(Z_2) the action of M is v |-> v*M.

The label is a label for the associated modular
curve. See <a href="http://users.wfu.edu/rouseja/2adic/index.html">Rouses's
web page</a> for details.
<br>
Data format with sample lines:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th> <th>class</th> <th>#</th> <th>[a1,a2,a3,a4,a6]</th>
<th>index</th><th>level</th>
<th align="left">matrix generators</th>
<th>label</th>
</tr>
<tr>
<td>11</td></td><td>a</td><td>1</td><td>[0,-1,1,-10,-20]</td><td>1</td><td>1</td><td>[]</td><td>X1</td>
</tr>
<tr>
<td>15</td><td>a</td><td>1</td><td>[1,1,1,-10,-10]</td><td>96</td><td>8</td>
<td>[[5,4,2,3],[1,0,0,5],[1,4,0,5],[1,0,4,5]]</td><td>X187d</td>
</tr>
</tbody></table>
</li></ul>

<h3>
TABLE ELEVEN: TORSION GROWTH
</h3>
Torsion growth data has been computed so far for curves of conductor up
to 400000, for extensions of degree up to 23.  (In degrees 11, 13,
17, 19, 22 and 23 there are no cases of torsion growth).
<ul>
<li>
<form>
<select name="deg" width=10>
<option value="None">Select a degree</option>
<option value="2">2</option>
<option value="3">3</option>
<option value="4">4</option>
<option value="5">5</option>
<option value="6">6</option>
<option value="7">7</option>
<option value="8">8</option>
<option value="9">9</option>
<option value="10">10</option>
<option value="12">12</option>
<option value="14">14</option>
<option value="15">15</option>
<option value="16">16</option>
<option value="18">18</option>
<option value="20">20</option>
<option value="21">21</option>
</select>
<select name="range" width=10>
<option value="None">Select a conductor range</option>
<option value="0-9999">0-9999</option>
<option value="10000-19999">10000-19999</option>
<option value="20000-29999">20000-29999</option>
<option value="30000-39999">30000-39999</option>
<option value="40000-49999">40000-49999</option>
<option value="50000-59999">50000-59999</option>
<option value="60000-69999">60000-69999</option>
<option value="70000-79999">70000-79999</option>
<option value="80000-89999">80000-89999</option>
<option value="90000-99999">90000-99999</option>
<option value="100000-109999">100000-109999</option>
<option value="110000-119999">110000-119999</option>
<option value="120000-129999">120000-129999</option>
<option value="130000-139999">130000-139999</option>
<option value="140000-149999">140000-149999</option>
<option value="150000-159999">150000-159999</option>
<option value="160000-169999">160000-169999</option>
<option value="170000-179999">170000-179999</option>
<option value="180000-189999">180000-189999</option>
<option value="190000-199999">190000-199999</option>
<option value="200000-209999">200000-209999</option>
<option value="210000-219999">210000-219999</option>
<option value="220000-229999">220000-229999</option>
<option value="230000-239999">230000-239999</option>
<option value="240000-249999">240000-249999</option>
<option value="250000-259999">250000-259999</option>
<option value="260000-269999">260000-269999</option>
<option value="270000-279999">270000-279999</option>
<option value="280000-289999">280000-289999</option>
<option value="290000-299999">290000-299999</option>
<option value="300000-309999">300000-309999</option>
<option value="310000-319999">310000-319999</option>
<option value="320000-329999">320000-329999</option>
<option value="330000-339999">330000-339999</option>
<option value="340000-349999">340000-349999</option>
<option value="350000-359999">350000-359999</option>
<option value="360000-369999">360000-369999</option>
<option value="370000-379999">370000-379999</option>
<option value="380000-389999">380000-389999</option>
<option value="390000-399999">390000-399999</option>
</select>
<input type=button value="Fetch" onClick="JumpToTorGro(this.form)">
</form>
<p>
For 2 &le; <i>d</i> &le; 23 we give for every curve <i>E</i> a list of the number
fields <i>K</i> of degree <i>d</i> (if any) such that <i>E</i>(<i>K</i>)<sub>tors</sub> is strictly
larger than <i>E</i>(<b>Q</b>)<sub>tors</sub> (and in case <i>d</i> is composite,
strictly larger than <i>E</i>(<i>K'</i>)<sub>tors</sub> for all subfields <i>K'</i>&sub;
</i>K</i>).
</p>
<p>
Fields are specified by the coefficients of a canonical defining polynomial.
Torsion structure is shown as [n] or [m,n] with m dividing n.
</p>
<p>
Data format with sample lines (one in degree 2, one in degree 12):
<table cellspacing="10" border="1">
<tbody><tr>
<th>Curve label</th> <th>[Torsion][Field]</th> <th>[Torsion][Field]</th> <th>[Torsion][Field]</th>
</tr>
<tr>
<td>130014e1</td> <td>[2,2][1806,-1,1]</td> <td>[4][-23,-1,1]</td> <td>[4][175,-1,1]</td>
</tr>
<tr>
<td>130032e1</td> <td colspan=3>[4][-10346,8862,-13965,14728,-4689,-1362,387,156,129,-86,9,0,1]</td>
</tr>
<tr>
</tr>
</tbody></table>
</p>

<hr>
<p><b>Recent update
    notes</b>:&nbsp; <a href="release_notes.md">27 November 2020</a>
</p><hr>

<tt>john dot cremona at gmail dot com</tt>


<hr>


</body>
</html>