1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<meta name="GENERATOR" content="Mozilla/4.05 [en] (X11; I; OSF1 V4.0 alpha) [Netscape]">
<title>Elliptic Curve Data</title>
<link rel="shortcut icon" href="http://www.loria.fr/~zimmerma/records/ECM1.ico"><!-- credit to Phil Carmody-->
</head>
<script language="JavaScript">
<!--
function JumpToIt(frm) {
var base_url = "https://raw.githubusercontent.com/JohnCremona/ecdata/master/"
var file = frm.url.options[frm.url.selectedIndex].value
if (file != "None") {
window.open(base_url + file)
}
}
function JumpToTorGro(frm) {
var base_url = "https://raw.githubusercontent.com/JohnCremona/ecdata/master/growth/"
var deg = frm.deg.options[frm.deg.selectedIndex].value
var range = frm.range.options[frm.range.selectedIndex].value
var newPage = base_url + deg + "/growth" + deg + "." + range
//window.alert(newPage)
if ((deg != "None") && (range != "None")) {
window.open(newPage)
}
}
//-->
</script>
<body bgcolor="#FFFFFF">
<center>
<h2>
Elliptic Curve Data<br>
by J. E. Cremona<br>
University of Warwick, U.K.</h2>
<p>
<i>
Updated <a href="release_notes.md">2020-11-27</a> (last major update 2019-07-22)
</i>
</p>
</center>
<hr width="100%">
<p>
This site is a front-end to the <tt>ecdata</tt> repository, hosted at
<a href="https://github.com/JohnCremona/ecdata">GitHub</a>, which
contains data files for (modular) elliptic curves over <b>Q</b>, in a
standard format to make them easily readable by other programs. For a
typeset version of the same data (with some extra data about local
reduction data) for conductors up to 1000, you can refer to the
book <a href="http://www.warwick.ac.uk/staff/J.E.Cremona/book/amec.html">Algorithms
for modular elliptic curves </a>, CUP 1992, second revised edition
1997. See the book's web site for more information, including errata
for the current (2nd) edition, and errata to the first edition (not
maintained since the appearance of the second edition). The errata
lists include errors and omissions in the tables. The files here have
the corrected data in them. As of 2000 the book is out of print, and
CUP have no plans to reprint it.
</p>
<p>
For a more sophisticated web interface to this data and much more, use
the <a href="http://www.lmfdb.org">LMFDB</a>.
</p>
<p>
The files correspond to tables 1-5 in the book (Table 5 is not in the
First Edition), with additional tables:
<ul>
<li>Table 6 gives the isogeny matrices between curves in each isogeny
class;
<li>Table 7 lists the integral points on each curve;
<li>Table 8 gives information on which curve is optimal, and the Manin
constant;
<li>Table 9 gives information on the mod-<i>p</i> Galois
representations attached to each curve;
<li>Table 10 gives information on the 2-adic Galois
representations attached to each curve.
<li>Table 11 gives information on the growth of torsion in number
fields of small degree, for each curve.
</ul>
</p>
<p>
From September 2005, a new labelling scheme was introduced for isogeny
classes. The old scheme started
A,B,...,Z,AA,BB,...,ZZ,AAA,BBB,... and had become unwieldy. The new
scheme is a straight base 26 encoding with a=0, b=1 etc., with the
classes numbered from 0 and leading a's deleted:
a,b,...,z,ba,bb,...bz,ca,cb,... . The change to lower case is to make
codes such as bb unambiguous between the old and new systems. For
conductors less than 1728 the number of isogeny classes is at most 25
and the only change is from upper to lower case.
</p>
<p>
We give all curves in each isogeny class. For all classes of curves
of conductor less than 400000, and many others, the first one listed
in each class is proved to be the so-called "optimal" or "strong Weil"
curve attached to each newform (referred to as optimal curves from now
on). See the section <a href="#optimality">"Optimality and the Manin
constant"</a> below. Some of the data is common to all curves in the
isogeny class.
</p>
<p>
The tables currently contain data for conductors up to <b>500000</b>.
</p>
<h3>Acknowledgements</h3>
<ul>
<li>The curves were computed via modular symbols, using the C++
library eclib (see https://github.com/JohnCremona/eclib), run on
machines in a variety of places, including clusters at Nottingham
(1999-2007, conductors up to 130000); Warwick (2011-2016, conductors
130000 to 400000); and the Google Computing Platform (15-22 July 2019,
conductors 400000-500000). Thanks to the universities of Nttingham
and Warwick, and to the Simons Foundation for the GCP runs.
Additional data is computed using a SageMath script to interface a
variety of software, including the following:
</li>
<li>
The modular degrees for conductors over 12000 were computed using Mark
Watkins's programs <tt>ec</tt> and <tt>sympow</tt>, via
<tt>SageMath</tt>.
</li>
<li>
Generators for many rank 1 curves were computed using either Magma's
<tt>HeegnerPoint</tt> function (written by Mark Watkins) or
GP's <tt>ellheegner</tt> function written by Christophe Delaunay and
Bill Allombert, based on the same ideas of Delaunay and Watkins.
</li>
<li>
The integral points for all curves were first computed using Sage in
an implementation due to Michael Mardaus, Tobias Nagel and JEC. For
all curves we checked on 2018-12-19 whether these agree with Magma
(version V2.24-1): in 207 cases Magma found more integral points
(never fewer), and the lists here are now hoped to be complete.
</li>
<li>
The images of the mod <i>p</i> Galois representations were computed by
Andrew Sutherland.
</li>
<li>
The images of the 2-adic Galois representations were computed using a
Magma program provided by Jeremy Rouse.
</li>
<li>
The torsion growth data was computed by Enrique Gonzalez-Jimenez and
Filip Najman.
</li>
</ul>
<hr>
<h3>
SUMMARY TABLES
</h3>
<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
count/count.00000-09999
<option value="count/count.00000-09999">1-9999</option>
<option value="count/count.10000-19999">10000-19999</option>
<option value="count/count.20000-29999">20000-29999</option>
<option value="count/count.30000-39999">30000-39999</option>
<option value="count/count.40000-49999">40000-49999</option>
<option value="count/count.50000-59999">50000-59999</option>
<option value="count/count.60000-69999">60000-69999</option>
<option value="count/count.70000-79999">70000-79999</option>
<option value="count/count.80000-89999">80000-89999</option>
<option value="count/count.90000-99999">90000-99999</option>
<option value="count/count.100000-109999">100000-109999</option>
<option value="count/count.110000-119999">110000-119999</option>
<option value="count/count.120000-129999">120000-129999</option>
<option value="count/count.130000-139999">130000-139999</option>
<option value="count/count.140000-149999">140000-149999</option>
<option value="count/count.150000-159999">150000-159999</option>
<option value="count/count.160000-169999">160000-169999</option>
<option value="count/count.170000-179999">170000-179999</option>
<option value="count/count.180000-189999">180000-189999</option>
<option value="count/count.190000-199999">190000-199999</option>
<option value="count/count.200000-209999">200000-209999</option>
<option value="count/count.210000-219999">210000-219999</option>
<option value="count/count.220000-229999">220000-229999</option>
<option value="count/count.230000-239999">230000-239999</option>
<option value="count/count.240000-249999">240000-249999</option>
<option value="count/count.250000-259999">250000-259999</option>
<option value="count/count.260000-269999">260000-269999</option>
<option value="count/count.270000-279999">270000-279999</option>
<option value="count/count.280000-289999">280000-289999</option>
<option value="count/count.290000-299999">290000-299999</option>
<option value="count/count.300000-309999">300000-309999</option>
<option value="count/count.310000-319999">310000-319999</option>
<option value="count/count.320000-329999">320000-329999</option>
<option value="count/count.330000-339999">330000-339999</option>
<option value="count/count.340000-349999">340000-349999</option>
<option value="count/count.350000-359999">350000-359999</option>
<option value="count/count.360000-369999">360000-369999</option>
<option value="count/count.370000-379999">370000-379999</option>
<option value="count/count.380000-389999">380000-389999</option>
<option value="count/count.390000-399999">390000-399999</option>
<option value="count/count.400000-409999">400000-409999</option>
<option value="count/count.410000-419999">410000-419999</option>
<option value="count/count.420000-429999">420000-429999</option>
<option value="count/count.430000-439999">430000-439999</option>
<option value="count/count.440000-449999">440000-449999</option>
<option value="count/count.450000-459999">450000-459999</option>
<option value="count/count.460000-469999">460000-469999</option>
<option value="count/count.470000-479999">470000-479999</option>
<option value="count/count.480000-489999">480000-489999</option>
<option value="count/count.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
Lists of number of curves (up to isogeny) of each individual conductor
(each file is 10000 lines long).
</li>
<li> <a href="table.html">Table</a> showing number of curves of each
range of 10000 conductors, sorted by rank.
</li>
</ul>
<h3>
TABLE ONE: CURVES
</h3>
<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="allcurves/allcurves.00000-09999">1-9999</option>
<option value="allcurves/allcurves.10000-19999">10000-19999</option>
<option value="allcurves/allcurves.20000-29999">20000-29999</option>
<option value="allcurves/allcurves.30000-39999">30000-39999</option>
<option value="allcurves/allcurves.40000-49999">40000-49999</option>
<option value="allcurves/allcurves.50000-59999">50000-59999</option>
<option value="allcurves/allcurves.60000-69999">60000-69999</option>
<option value="allcurves/allcurves.70000-79999">70000-79999</option>
<option value="allcurves/allcurves.80000-89999">80000-89999</option>
<option value="allcurves/allcurves.90000-99999">90000-99999</option>
<option value="allcurves/allcurves.100000-109999">100000-109999</option>
<option value="allcurves/allcurves.110000-119999">110000-119999</option>
<option value="allcurves/allcurves.120000-129999">120000-129999</option>
<option value="allcurves/allcurves.130000-139999">130000-139999</option>
<option value="allcurves/allcurves.140000-149999">140000-149999</option>
<option value="allcurves/allcurves.150000-159999">150000-159999</option>
<option value="allcurves/allcurves.160000-169999">160000-169999</option>
<option value="allcurves/allcurves.170000-179999">170000-179999</option>
<option value="allcurves/allcurves.180000-189999">180000-189999</option>
<option value="allcurves/allcurves.190000-199999">190000-199999</option>
<option value="allcurves/allcurves.200000-209999">200000-209999</option>
<option value="allcurves/allcurves.210000-219999">210000-219999</option>
<option value="allcurves/allcurves.220000-229999">220000-229999</option>
<option value="allcurves/allcurves.230000-239999">230000-239999</option>
<option value="allcurves/allcurves.240000-249999">240000-249999</option>
<option value="allcurves/allcurves.250000-259999">250000-259999</option>
<option value="allcurves/allcurves.260000-269999">260000-269999</option>
<option value="allcurves/allcurves.270000-279999">270000-279999</option>
<option value="allcurves/allcurves.280000-289999">280000-289999</option>
<option value="allcurves/allcurves.290000-299999">290000-299999</option>
<option value="allcurves/allcurves.300000-309999">300000-309999</option>
<option value="allcurves/allcurves.310000-319999">310000-319999</option>
<option value="allcurves/allcurves.320000-329999">320000-329999</option>
<option value="allcurves/allcurves.330000-339999">330000-339999</option>
<option value="allcurves/allcurves.340000-349999">340000-349999</option>
<option value="allcurves/allcurves.350000-359999">350000-359999</option>
<option value="allcurves/allcurves.360000-369999">360000-369999</option>
<option value="allcurves/allcurves.370000-379999">370000-379999</option>
<option value="allcurves/allcurves.380000-389999">380000-389999</option>
<option value="allcurves/allcurves.390000-399999">390000-399999</option>
<option value="allcurves/allcurves.400000-409999">400000-409999</option>
<option value="allcurves/allcurves.410000-419999">410000-419999</option>
<option value="allcurves/allcurves.420000-429999">420000-429999</option>
<option value="allcurves/allcurves.430000-439999">430000-439999</option>
<option value="allcurves/allcurves.440000-449999">440000-449999</option>
<option value="allcurves/allcurves.450000-459999">450000-459999</option>
<option value="allcurves/allcurves.460000-469999">460000-469999</option>
<option value="allcurves/allcurves.470000-479999">470000-479999</option>
<option value="allcurves/allcurves.480000-489999">480000-489999</option>
<option value="allcurves/allcurves.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
<p>
One entry for each isomorphism class of curves, giving conductor N,
letter id for isogeny class, number of the curve in the class,
coefficients of minimal Weierstrass equation, rank r, order of torsion
subgroup |T|. For all N up to 370000 the optimal
Γ<sub>0</sub>(N) curve is the one labelled 1 (except for class
990h when it is the curve labelled 3). For N>370000, this is
probably also true, but in some cases remains conditional on Stevens'
Conjecture (see the section <a href="#optimality">"Optimality and the
Manin constant"</a> below).
</p>
<p>
Data format with sample line:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th> <th>C</th> <th>#</th> <th>curve</th> <th>r</th> <th>t</th>
</tr>
<tr>
<td>2730</td> <td>bd</td> <td>1</td> <td>[1,0,0,-25725,1577457]</td>
<td>0</td> <td>12</td> </tr>
</tbody></table>
where:
</p><ul>
<li> <b>N</b> = conductor
</li><li> <b>C</b> = isogeny class (letter(s))
</li><li> <b>#</b> = number of curve in class = 1 (except for 990h3)
</li><li> <b>curve</b> = curve coefficients in format [a1,a2,a3,a4,a6]
</li><li> <b>r</b> = rank
</li><li> <b>t</b> = order of torsion
</li></ul>
<p>
Simple searches may be carried out with the unix/linux utility awk.
For example:
</p><p>
</p><ul>
<li>All curves with torsion of order 12:
<p align="LEFT"><tt> awk '$6==12' allcurves.* | sort -n
-k 1</tt></p>
</li><li>All curves with torsion of order 16:
<p align="LEFT"><tt> awk '$6==16' allcurves.*</tt></p>
</li><li>All curves of rank 3:
<p align="LEFT"><tt> awk '$5==3' allcurves.* | sort -n
-k 1 </tt></p>
</li></ul>
If it is desired to have the curve coefficients in five separate
fields with spaces as field separators, this can be achieved using
scripts such as this: <p align="LEFT"><tt> sed
's/[]\[,]/ /g' allcurves.00000-10000</tt></p>
<!--
<LI><A HREF="curves.1-1000.html">curves.1-1000.html</A>, experimental
format for a table in html.
-->
</li></ul>
<h3>
TABLE TWO: GENERATORS
</h3>
<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="allgens/allgens.00000-09999">1-9999</option>
<option value="allgens/allgens.10000-19999">10000-19999</option>
<option value="allgens/allgens.20000-29999">20000-29999</option>
<option value="allgens/allgens.30000-39999">30000-39999</option>
<option value="allgens/allgens.40000-49999">40000-49999</option>
<option value="allgens/allgens.50000-59999">50000-59999</option>
<option value="allgens/allgens.60000-69999">60000-69999</option>
<option value="allgens/allgens.70000-79999">70000-79999</option>
<option value="allgens/allgens.80000-89999">80000-89999</option>
<option value="allgens/allgens.90000-99999">90000-99999</option>
<option value="allgens/allgens.100000-109999">100000-109999</option>
<option value="allgens/allgens.110000-119999">110000-119999</option>
<option value="allgens/allgens.120000-129999">120000-129999</option>
<option value="allgens/allgens.130000-139999">130000-139999</option>
<option value="allgens/allgens.140000-149999">140000-149999</option>
<option value="allgens/allgens.150000-159999">150000-159999</option>
<option value="allgens/allgens.160000-169999">160000-169999</option>
<option value="allgens/allgens.170000-179999">170000-179999</option>
<option value="allgens/allgens.180000-189999">180000-189999</option>
<option value="allgens/allgens.190000-199999">190000-199999</option>
<option value="allgens/allgens.200000-209999">200000-209999</option>
<option value="allgens/allgens.210000-219999">210000-219999</option>
<option value="allgens/allgens.220000-229999">220000-229999</option>
<option value="allgens/allgens.230000-239999">230000-239999</option>
<option value="allgens/allgens.240000-249999">240000-249999</option>
<option value="allgens/allgens.250000-259999">250000-259999</option>
<option value="allgens/allgens.260000-269999">260000-269999</option>
<option value="allgens/allgens.270000-279999">270000-279999</option>
<option value="allgens/allgens.280000-289999">280000-289999</option>
<option value="allgens/allgens.290000-299999">290000-299999</option>
<option value="allgens/allgens.300000-309999">300000-309999</option>
<option value="allgens/allgens.310000-319999">310000-319999</option>
<option value="allgens/allgens.320000-329999">320000-329999</option>
<option value="allgens/allgens.330000-339999">330000-339999</option>
<option value="allgens/allgens.340000-349999">340000-349999</option>
<option value="allgens/allgens.350000-359999">350000-359999</option>
<option value="allgens/allgens.360000-369999">360000-369999</option>
<option value="allgens/allgens.370000-379999">370000-379999</option>
<option value="allgens/allgens.380000-389999">380000-389999</option>
<option value="allgens/allgens.390000-399999">390000-399999</option>
<option value="allgens/allgens.400000-409999">400000-409999</option>
<option value="allgens/allgens.410000-419999">410000-419999</option>
<option value="allgens/allgens.420000-429999">420000-429999</option>
<option value="allgens/allgens.430000-439999">430000-439999</option>
<option value="allgens/allgens.440000-449999">440000-449999</option>
<option value="allgens/allgens.450000-459999">450000-459999</option>
<option value="allgens/allgens.460000-469999">460000-469999</option>
<option value="allgens/allgens.470000-479999">470000-479999</option>
<option value="allgens/allgens.480000-489999">480000-489999</option>
<option value="allgens/allgens.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
<p>
For every curve, generators are given for the Mordell group, in
projective coordinates. <b>N.B.</b> In
<b>all</b> cases I have checked that the point(s) given are indeed
generators. Each entry consists of conductor N, isogeny class code,
number of curve in class, curve coefficients, rank r, torsion
structure (as a list of t structure constants for t=0,1 or 2, i.e. in
the form [] or [t] or [t1,t2]) and r+t points in projective
coordinates (torsion last). For example, the entry
</p>
<table cellspacing="20" border="1">
<tbody><tr>
<td>389</td><td>a</td><td>1</td><td>[0,1,1,-2,0]</td><td>2</td><td>[]</td><td>[0:0:1]</td><td>[1:0:1]
</td></tr>
</tbody></table>
<p>
means that curve 389a1 = [0,1,1,-2,0] has rank 2 and trivial torsion, with generators [0:0:1]=(0,0)
and [1:0:1]=(1,0), while the entry
</p>
<table cellspacing="2" border="1">
<tbody><tr>
<td>4602</td>
<td>a</td>
<td>1</td>
<td>[1,1,0,-37746035,-89296920339]</td>
<td>1</td>
<td>[2]</td>
<td>[175781888357266265777015693706802984972253428834450486976370 : 19575260230015313702261379022151675961965157108920263594545223 : 11451799510178287699130942513632433218384249076487302907]</td>
<td>[7094:-3547:1]</td>
</tr>
</tbody></table>
<p>
means that curve 4602a1 = [1,1,0,-37746035,-89296920339] has rank 1 with
generator
</p><pre> 77985922458974949246858229195945103471590 19575260230015313702261379022151675961965157108920263594545223
[----------------------------------------- , -------------------------------------------------------------- ]
2254020761884782243^2 2254020761884782243^3
</pre>
together with torsion of order 2 generated by [7094:-3547:1] = (7094,-3547).
<p>
<b>N.B.</b> From April 2011 the format of these files was changed to
include information about the torsion; there is therefore now a line
in the allgens files for every curve, not just those of positive rank. The
files for N<130000 were updated accordingly on 15/4/11.
</p>
</li></ul>
<h3>
TABLE THREE: HECKE EIGENVALUES
</h3>
<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="aplist/aplist.00000-09999">1-9999</option>
<option value="aplist/aplist.10000-19999">10000-19999</option>
<option value="aplist/aplist.20000-29999">20000-29999</option>
<option value="aplist/aplist.30000-39999">30000-39999</option>
<option value="aplist/aplist.40000-49999">40000-49999</option>
<option value="aplist/aplist.50000-59999">50000-59999</option>
<option value="aplist/aplist.60000-69999">60000-69999</option>
<option value="aplist/aplist.70000-79999">70000-79999</option>
<option value="aplist/aplist.80000-89999">80000-89999</option>
<option value="aplist/aplist.90000-99999">90000-99999</option>
<option value="aplist/aplist.100000-109999">100000-109999</option>
<option value="aplist/aplist.110000-119999">110000-119999</option>
<option value="aplist/aplist.120000-129999">120000-129999</option>
<option value="aplist/aplist.130000-139999">130000-139999</option>
<option value="aplist/aplist.140000-149999">140000-149999</option>
<option value="aplist/aplist.150000-159999">150000-159999</option>
<option value="aplist/aplist.160000-169999">160000-169999</option>
<option value="aplist/aplist.170000-179999">170000-179999</option>
<option value="aplist/aplist.180000-189999">180000-189999</option>
<option value="aplist/aplist.190000-199999">190000-199999</option>
<option value="aplist/aplist.200000-209999">200000-209999</option>
<option value="aplist/aplist.210000-219999">210000-219999</option>
<option value="aplist/aplist.220000-229999">220000-229999</option>
<option value="aplist/aplist.230000-239999">230000-239999</option>
<option value="aplist/aplist.240000-249999">240000-249999</option>
<option value="aplist/aplist.250000-259999">250000-259999</option>
<option value="aplist/aplist.260000-269999">260000-269999</option>
<option value="aplist/aplist.270000-279999">270000-279999</option>
<option value="aplist/aplist.280000-289999">280000-289999</option>
<option value="aplist/aplist.290000-299999">290000-299999</option>
<option value="aplist/aplist.300000-309999">300000-309999</option>
<option value="aplist/aplist.310000-319999">310000-319999</option>
<option value="aplist/aplist.320000-329999">320000-329999</option>
<option value="aplist/aplist.330000-339999">330000-339999</option>
<option value="aplist/aplist.340000-349999">340000-349999</option>
<option value="aplist/aplist.350000-359999">350000-359999</option>
<option value="aplist/aplist.360000-369999">360000-369999</option>
<option value="aplist/aplist.370000-379999">370000-379999</option>
<option value="aplist/aplist.380000-389999">380000-389999</option>
<option value="aplist/aplist.390000-399999">390000-399999</option>
<option value="aplist/aplist.400000-409999">400000-409999</option>
<option value="aplist/aplist.410000-419999">410000-419999</option>
<option value="aplist/aplist.420000-429999">420000-429999</option>
<option value="aplist/aplist.430000-439999">430000-439999</option>
<option value="aplist/aplist.440000-449999">440000-449999</option>
<option value="aplist/aplist.450000-459999">450000-459999</option>
<option value="aplist/aplist.460000-469999">460000-469999</option>
<option value="aplist/aplist.470000-479999">470000-479999</option>
<option value="aplist/aplist.480000-489999">480000-489999</option>
<option value="aplist/aplist.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
Hecke eigenvalues for p<100 for each of the corresponding newforms for
Γ<sub>0</sub>(N). When p|N the entry is simply "+" or "-" and is a W-eigenvalue,
as in Antwerp IV. When there are primes p|n with p>100 the corresponding
eigenvalue(s) are in extra column(s), as in
<br>
<table cellspacing="10" border="1">
<tbody><tr>
<td>101</td><td>a</td><td>0</td><td>-2</td><td>-1</td><td>-2</td><td>-2</td><td>1</td><td>3</td><td>-5</td><td>1
</td><td>-4</td><td>-9</td><td>-2</td><td>8</td><td>-8</td><td>7</td><td>-2
</td><td>-14</td><td>4</td><td>2</td><td>13</td><td>8</td><td>-9</td><td>-4
</td><td>14</td><td>2</td><td>+(101)
</td></tr></tbody></table>
<br>
<table cellspacing="10" border="1">
<tbody><tr>
<td>10201</td><td>a</td><td>0</td><td>2</td><td>-1</td><td>2</td><td>2</td><td>1</td><td>3</td><td>-5</td><td>
1</td><td>4</td><td>-9</td><td>-2</td><td>-8</td><td>-8</td><td>7</td><td>2</td><td>14</td><td>-4</td><td>
-2</td><td>13</td><td>-8</td><td>-9</td><td>4</td><td>-14</td><td>2</td><td>+(101)</td></tr></tbody></table>
<br>
<table cellspacing="10" border="1">
<tbody><tr>
<td>19153</td><td>a</td><td>2</td><td>0</td><td>-1</td><td>0</td><td>-4</td><td>7</td><td>-3</td><td>-3</td><td>-6</td><td>3</td><td>8</td><td>-2</td><td>0</td><td>1</td><td>1</td><td>0</td><td>15</td><td>6</td><td>
-13</td><td>12</td><td>-2</td><td>2</td><td>9</td><td>-9</td><td>-10</td><td>+(107)</td><td>-(179)
</td></tr></tbody></table>
<br>
so the total number of fields is 27, 28 or 29 on each line (assuming
N<1113121=101*103*107)
</li></ul>
<h3>
TABLE FOUR: BSD DATA and ANALYTIC ORDERS OF SHA
</h3>
<ul>
<li>
<a href="https://raw.githubusercontent.com/JohnCremona/ecdata/master/allbsd/bsd.1-1000">1-1000</a>
<p>
Birch--Swinnerton-Dyer data for the optimal
curve in each class, exactly as in the book. Column headings:
Conductor, class id letter, rank, real period w, L^(r)(1)/r!,
regulator R, rational factor, S. Here the rational factor is
L^(r)(1)/wRr!; when r=0 this is exact and given as a pair of integers
(numerator denominator); when r>0 it is approximate, but easily
recognizable. Lastly, S is the value of the order of the
Tate-Shafarevich group as predicted by B-SD (the "analytic order of
Sha"), given the previous data and also the local factors and
torsion. When r=0 this is exact; when r>0 it is approximate, and was
computed to several places but to save space is just entered as
1.0. (S>1 in only 4 cases, where S=4 or 9).
</p>
</li><li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="allbsd/allbsd.00000-09999">1-9999</option>
<option value="allbsd/allbsd.10000-19999">10000-19999</option>
<option value="allbsd/allbsd.20000-29999">20000-29999</option>
<option value="allbsd/allbsd.30000-39999">30000-39999</option>
<option value="allbsd/allbsd.40000-49999">40000-49999</option>
<option value="allbsd/allbsd.50000-59999">50000-59999</option>
<option value="allbsd/allbsd.60000-69999">60000-69999</option>
<option value="allbsd/allbsd.70000-79999">70000-79999</option>
<option value="allbsd/allbsd.80000-89999">80000-89999</option>
<option value="allbsd/allbsd.90000-99999">90000-99999</option>
<option value="allbsd/allbsd.100000-109999">100000-109999</option>
<option value="allbsd/allbsd.110000-119999">110000-119999</option>
<option value="allbsd/allbsd.120000-129999">120000-129999</option>
<option value="allbsd/allbsd.130000-139999">130000-139999</option>
<option value="allbsd/allbsd.140000-149999">140000-149999</option>
<option value="allbsd/allbsd.150000-159999">150000-159999</option>
<option value="allbsd/allbsd.160000-169999">160000-169999</option>
<option value="allbsd/allbsd.170000-179999">170000-179999</option>
<option value="allbsd/allbsd.180000-189999">180000-189999</option>
<option value="allbsd/allbsd.190000-199999">190000-199999</option>
<option value="allbsd/allbsd.200000-209999">200000-209999</option>
<option value="allbsd/allbsd.210000-219999">210000-219999</option>
<option value="allbsd/allbsd.220000-229999">220000-229999</option>
<option value="allbsd/allbsd.230000-239999">230000-239999</option>
<option value="allbsd/allbsd.240000-249999">240000-249999</option>
<option value="allbsd/allbsd.250000-259999">250000-259999</option>
<option value="allbsd/allbsd.260000-269999">260000-269999</option>
<option value="allbsd/allbsd.270000-279999">270000-279999</option>
<option value="allbsd/allbsd.280000-289999">280000-289999</option>
<option value="allbsd/allbsd.290000-299999">290000-299999</option>
<option value="allbsd/allbsd.300000-309999">300000-309999</option>
<option value="allbsd/allbsd.310000-319999">310000-319999</option>
<option value="allbsd/allbsd.320000-329999">320000-329999</option>
<option value="allbsd/allbsd.330000-339999">330000-339999</option>
<option value="allbsd/allbsd.340000-349999">340000-349999</option>
<option value="allbsd/allbsd.350000-359999">350000-359999</option>
<option value="allbsd/allbsd.360000-369999">360000-369999</option>
<option value="allbsd/allbsd.370000-379999">370000-379999</option>
<option value="allbsd/allbsd.380000-389999">380000-389999</option>
<option value="allbsd/allbsd.390000-399999">390000-399999</option>
<option value="allbsd/allbsd.400000-409999">400000-409999</option>
<option value="allbsd/allbsd.410000-419999">410000-419999</option>
<option value="allbsd/allbsd.420000-429999">420000-429999</option>
<option value="allbsd/allbsd.430000-439999">430000-439999</option>
<option value="allbsd/allbsd.440000-449999">440000-449999</option>
<option value="allbsd/allbsd.450000-459999">450000-459999</option>
<option value="allbsd/allbsd.460000-469999">460000-469999</option>
<option value="allbsd/allbsd.470000-479999">470000-479999</option>
<option value="allbsd/allbsd.480000-489999">480000-489999</option>
<option value="allbsd/allbsd.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
Same as previous but with data for all the curves (not only the
optimal ones) up to the current bound. <br>
Data format with sample lines:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th><th>C</th><th>#</th><th>curve</th><th>r</th><th>t</th>
<th>cp</th><th>om</th><th>L</th><th>R</th><th>S</th>
</tr>
<tr>
<td>11</td> <td>a</td> <td>1</td> <td>[0,-1,1,-10,-20]</td> <td>0</td> <td>5</td>
<td>5</td> <td>1.269209304</td> <td>0.25384186</td> <td>1</td> <td>1</td>
</tr>
<tr>
<td>5077</td> <td>a</td> <td>1</td> <td>[0,0,1,-7,6]</td> <td>3</td> <td>1</td>
<td>1</td> <td>4.151687983</td> <td>1.73184990</td> <td> 0.41714355</td> <td>1.00000000</td>
</tr>
</tbody></table>
where:
<ul>
<li> <b>N</b> = conductor
</li><li> <b>C</b> = isogeny class (letter(s))
</li><li> <b>#</b> = number of curve in class
</li><li> <b>curve</b> = curve coefficients in format [a1,a2,a3,a4,a6]
</li><li> <b>r</b> = rank
</li><li> <b>t</b> = order of torsion
</li><li> <b>cp</b> = product of Tamagawa factors <i>c<sub>p</sub></i>
</li><li> <b>om</b> = real period
</li><li> <b>L</b> = <i>L<sup>(r)</sup>(E,1)</i>/<i>r</i>!.
</li><li> <b>R</b> = Regulator
</li><li> <b>S</b> = (Analytic) order of Sha.
</li></ul>
</li>
<br>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="allbigsha/allbigsha.00000-09999">1-9999</option>
<option value="allbigsha/allbigsha.10000-19999">10000-19999</option>
<option value="allbigsha/allbigsha.20000-29999">20000-29999</option>
<option value="allbigsha/allbigsha.30000-39999">30000-39999</option>
<option value="allbigsha/allbigsha.40000-49999">40000-49999</option>
<option value="allbigsha/allbigsha.50000-59999">50000-59999</option>
<option value="allbigsha/allbigsha.60000-69999">60000-69999</option>
<option value="allbigsha/allbigsha.70000-79999">70000-79999</option>
<option value="allbigsha/allbigsha.80000-89999">80000-89999</option>
<option value="allbigsha/allbigsha.90000-99999">90000-99999</option>
<option value="allbigsha/allbigsha.100000-109999">100000-109999</option>
<option value="allbigsha/allbigsha.110000-119999">110000-119999</option>
<option value="allbigsha/allbigsha.120000-129999">120000-129999</option>
<option value="allbigsha/allbigsha.130000-139999">130000-139999</option>
<option value="allbigsha/allbigsha.140000-149999">140000-149999</option>
<option value="allbigsha/allbigsha.150000-159999">150000-159999</option>
<option value="allbigsha/allbigsha.160000-169999">160000-169999</option>
<option value="allbigsha/allbigsha.170000-179999">170000-179999</option>
<option value="allbigsha/allbigsha.180000-189999">180000-189999</option>
<option value="allbigsha/allbigsha.190000-199999">190000-199999</option>
<option value="allbigsha/allbigsha.200000-209999">200000-209999</option>
<option value="allbigsha/allbigsha.210000-219999">210000-219999</option>
<option value="allbigsha/allbigsha.220000-229999">220000-229999</option>
<option value="allbigsha/allbigsha.230000-239999">230000-239999</option>
<option value="allbigsha/allbigsha.240000-249999">240000-249999</option>
<option value="allbigsha/allbigsha.250000-259999">250000-259999</option>
<option value="allbigsha/allbigsha.260000-269999">260000-269999</option>
<option value="allbigsha/allbigsha.270000-279999">270000-279999</option>
<option value="allbigsha/allbigsha.280000-289999">280000-289999</option>
<option value="allbigsha/allbigsha.290000-299999">290000-299999</option>
<option value="allbigsha/allbigsha.300000-309999">300000-309999</option>
<option value="allbigsha/allbigsha.310000-319999">310000-319999</option>
<option value="allbigsha/allbigsha.320000-329999">320000-329999</option>
<option value="allbigsha/allbigsha.330000-339999">330000-339999</option>
<option value="allbigsha/allbigsha.340000-349999">340000-349999</option>
<option value="allbigsha/allbigsha.350000-359999">350000-359999</option>
<option value="allbigsha/allbigsha.360000-369999">360000-369999</option>
<option value="allbigsha/allbigsha.370000-379999">370000-379999</option>
<option value="allbigsha/allbigsha.380000-389999">380000-389999</option>
<option value="allbigsha/allbigsha.390000-399999">390000-399999</option>
<option value="allbigsha/allbigsha.400000-409999">400000-409999</option>
<option value="allbigsha/allbigsha.410000-419999">410000-419999</option>
<option value="allbigsha/allbigsha.420000-429999">420000-429999</option>
<option value="allbigsha/allbigsha.430000-439999">430000-439999</option>
<option value="allbigsha/allbigsha.440000-449999">440000-449999</option>
<option value="allbigsha/allbigsha.450000-459999">450000-459999</option>
<option value="allbigsha/allbigsha.460000-469999">460000-469999</option>
<option value="allbigsha/allbigsha.470000-479999">470000-479999</option>
<option value="allbigsha/allbigsha.480000-489999">480000-489999</option>
<option value="allbigsha/allbigsha.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
Lists of the curves with non-trivial Tate-Shafarevich group, according
to the BSD conjecture; i.e., curves whose "analytic order of Sha" is
greater than 1. The record (to conductor 410000) is 5625=75<sup>2</sup>
for 165066d3.
</li>
<br>
<li>
<a href="shas.html">shas.html</a><br>
A summary table of large Shas. Note that up to conductor 500000
there are 243527 elliptic curves with non-trivial Sha, with ranks 0
(222922 curves), 1 (20563 curves), 2 (42 curves, all with
2-torsion).
</li></ul>
<h3>
TABLE FIVE: PARAMETRIZATION DEGREES
</h3>
<ul>
<li>
Optimal curves:
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="degphi/degphi.00000-09999">1-9999</option>
<option value="degphi/degphi.10000-19999">10000-19999</option>
<option value="degphi/degphi.20000-29999">20000-29999</option>
<option value="degphi/degphi.30000-39999">30000-39999</option>
<option value="degphi/degphi.40000-49999">40000-49999</option>
<option value="degphi/degphi.50000-59999">50000-59999</option>
<option value="degphi/degphi.60000-69999">60000-69999</option>
<option value="degphi/degphi.70000-79999">70000-79999</option>
<option value="degphi/degphi.80000-89999">80000-89999</option>
<option value="degphi/degphi.90000-99999">90000-99999</option>
<option value="degphi/degphi.100000-109999">100000-109999</option>
<option value="degphi/degphi.110000-119999">110000-119999</option>
<option value="degphi/degphi.120000-129999">120000-129999</option>
<option value="degphi/degphi.130000-139999">130000-139999</option>
<option value="degphi/degphi.140000-149999">140000-149999</option>
<option value="degphi/degphi.150000-159999">150000-159999</option>
<option value="degphi/degphi.160000-169999">160000-169999</option>
<option value="degphi/degphi.170000-179999">170000-179999</option>
<option value="degphi/degphi.180000-189999">180000-189999</option>
<option value="degphi/degphi.190000-199999">190000-199999</option>
<option value="degphi/degphi.200000-209999">200000-209999</option>
<option value="degphi/degphi.210000-219999">210000-219999</option>
<option value="degphi/degphi.220000-229999">220000-229999</option>
<option value="degphi/degphi.230000-239999">230000-239999</option>
<option value="degphi/degphi.240000-249999">240000-249999</option>
<option value="degphi/degphi.250000-259999">250000-259999</option>
<option value="degphi/degphi.260000-269999">260000-269999</option>
<option value="degphi/degphi.270000-279999">270000-279999</option>
<option value="degphi/degphi.280000-289999">280000-289999</option>
<option value="degphi/degphi.290000-299999">290000-299999</option>
<option value="degphi/degphi.300000-309999">300000-309999</option>
<option value="degphi/degphi.310000-319999">310000-319999</option>
<option value="degphi/degphi.320000-329999">320000-329999</option>
<option value="degphi/degphi.330000-339999">330000-339999</option>
<option value="degphi/degphi.340000-349999">340000-349999</option>
<option value="degphi/degphi.350000-359999">350000-359999</option>
<option value="degphi/degphi.360000-369999">360000-369999</option>
<option value="degphi/degphi.370000-379999">370000-379999</option>
<option value="degphi/degphi.380000-389999">380000-389999</option>
<option value="degphi/degphi.390000-399999">390000-399999</option>
<option value="degphi/degphi.400000-409999">400000-409999</option>
<option value="degphi/degphi.410000-419999">410000-419999</option>
<option value="degphi/degphi.420000-429999">420000-429999</option>
<option value="degphi/degphi.430000-439999">430000-439999</option>
<option value="degphi/degphi.440000-449999">440000-449999</option>
<option value="degphi/degphi.450000-459999">450000-459999</option>
<option value="degphi/degphi.460000-469999">460000-469999</option>
<option value="degphi/degphi.470000-479999">470000-479999</option>
<option value="degphi/degphi.480000-489999">480000-489999</option>
<option value="degphi/degphi.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
A table of the degree of the modular parametrizations of each optimal curve.
<br>
Data format with sample line:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th> <th>id</th> <th>degree</th> <th>primes</th> <th>curve</th>
</tr>
<tr>
<td>5077</td> <td>a 1</td> <td>1984</td> <td>{2,31}</td> <td>[0,0,1,-7,6]</td>
</tr></tbody></table>
where "primes" is the set of primes dividing the degree.
</li>
<br>
<li>
All curves:
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="alldegphi/alldegphi.00000-09999">1-9999</option>
<option value="alldegphi/alldegphi.10000-19999">10000-19999</option>
<option value="alldegphi/alldegphi.20000-29999">20000-29999</option>
<option value="alldegphi/alldegphi.30000-39999">30000-39999</option>
<option value="alldegphi/alldegphi.40000-49999">40000-49999</option>
<option value="alldegphi/alldegphi.50000-59999">50000-59999</option>
<option value="alldegphi/alldegphi.60000-69999">60000-69999</option>
<option value="alldegphi/alldegphi.70000-79999">70000-79999</option>
<option value="alldegphi/alldegphi.80000-89999">80000-89999</option>
<option value="alldegphi/alldegphi.90000-99999">90000-99999</option>
<option value="alldegphi/alldegphi.100000-109999">100000-109999</option>
<option value="alldegphi/alldegphi.110000-119999">110000-119999</option>
<option value="alldegphi/alldegphi.120000-129999">120000-129999</option>
<option value="alldegphi/alldegphi.130000-139999">130000-139999</option>
<option value="alldegphi/alldegphi.140000-149999">140000-149999</option>
<option value="alldegphi/alldegphi.150000-159999">150000-159999</option>
<option value="alldegphi/alldegphi.160000-169999">160000-169999</option>
<option value="alldegphi/alldegphi.170000-179999">170000-179999</option>
<option value="alldegphi/alldegphi.180000-189999">180000-189999</option>
<option value="alldegphi/alldegphi.190000-199999">190000-199999</option>
<option value="alldegphi/alldegphi.200000-209999">200000-209999</option>
<option value="alldegphi/alldegphi.210000-219999">210000-219999</option>
<option value="alldegphi/alldegphi.220000-229999">220000-229999</option>
<option value="alldegphi/alldegphi.230000-239999">230000-239999</option>
<option value="alldegphi/alldegphi.240000-249999">240000-249999</option>
<option value="alldegphi/alldegphi.250000-259999">250000-259999</option>
<option value="alldegphi/alldegphi.260000-269999">260000-269999</option>
<option value="alldegphi/alldegphi.270000-279999">270000-279999</option>
<option value="alldegphi/alldegphi.280000-289999">280000-289999</option>
<option value="alldegphi/alldegphi.290000-299999">290000-299999</option>
<option value="alldegphi/alldegphi.300000-309999">300000-309999</option>
<option value="alldegphi/alldegphi.310000-319999">310000-319999</option>
<option value="alldegphi/alldegphi.320000-329999">320000-329999</option>
<option value="alldegphi/alldegphi.330000-339999">330000-339999</option>
<option value="alldegphi/alldegphi.340000-349999">340000-349999</option>
<option value="alldegphi/alldegphi.350000-359999">350000-359999</option>
<option value="alldegphi/alldegphi.360000-369999">360000-369999</option>
<option value="alldegphi/alldegphi.370000-379999">370000-379999</option>
<option value="alldegphi/alldegphi.380000-389999">380000-389999</option>
<option value="alldegphi/alldegphi.390000-399999">390000-399999</option>
<option value="alldegphi/alldegphi.400000-409999">400000-409999</option>
<option value="alldegphi/alldegphi.410000-419999">410000-419999</option>
<option value="alldegphi/alldegphi.420000-429999">420000-429999</option>
<option value="alldegphi/alldegphi.430000-439999">430000-439999</option>
<option value="alldegphi/alldegphi.440000-449999">440000-449999</option>
<option value="alldegphi/alldegphi.450000-459999">450000-459999</option>
<option value="alldegphi/alldegphi.460000-469999">460000-469999</option>
<option value="alldegphi/alldegphi.470000-479999">470000-479999</option>
<option value="alldegphi/alldegphi.480000-489999">480000-489999</option>
<option value="alldegphi/alldegphi.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
A table of the degree of the modular parametrizations of every curve.
<br>
Data format with sample line:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th> <th>id</th> <th>#</th> <th>curve</th> <th>degree</th>
</tr>
<tr>
<td>11</td> <td>a</td> <td>1</td> <td>[0,-1,1,-10,-20]</td> <td> 1</td>
</tr>
<tr>
<td>11</td> <td>a</td> <td>2</td> <td>[0,-1,1,-7820,-263580]</td> <td> 5</td>
</tr>
<tr>
<td>11</td> <td>a</td> <td>3</td> <td>[0,-1,1,0,0]</td> <td> 5</td>
</tr></tbody></table>
</li>
</ul>
<h3>
TABLE SIX: ISOGENY MATRICES
</h3>
<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="allisog/allisog.00000-09999">1-9999</option>
<option value="allisog/allisog.10000-19999">10000-19999</option>
<option value="allisog/allisog.20000-29999">20000-29999</option>
<option value="allisog/allisog.30000-39999">30000-39999</option>
<option value="allisog/allisog.40000-49999">40000-49999</option>
<option value="allisog/allisog.50000-59999">50000-59999</option>
<option value="allisog/allisog.60000-69999">60000-69999</option>
<option value="allisog/allisog.70000-79999">70000-79999</option>
<option value="allisog/allisog.80000-89999">80000-89999</option>
<option value="allisog/allisog.90000-99999">90000-99999</option>
<option value="allisog/allisog.100000-109999">100000-109999</option>
<option value="allisog/allisog.110000-119999">110000-119999</option>
<option value="allisog/allisog.120000-129999">120000-129999</option>
<option value="allisog/allisog.130000-139999">130000-139999</option>
<option value="allisog/allisog.140000-149999">140000-149999</option>
<option value="allisog/allisog.150000-159999">150000-159999</option>
<option value="allisog/allisog.160000-169999">160000-169999</option>
<option value="allisog/allisog.170000-179999">170000-179999</option>
<option value="allisog/allisog.180000-189999">180000-189999</option>
<option value="allisog/allisog.190000-199999">190000-199999</option>
<option value="allisog/allisog.200000-209999">200000-209999</option>
<option value="allisog/allisog.210000-219999">210000-219999</option>
<option value="allisog/allisog.220000-229999">220000-229999</option>
<option value="allisog/allisog.240000-249999">240000-249999</option>
<option value="allisog/allisog.250000-259999">250000-259999</option>
<option value="allisog/allisog.260000-269999">260000-269999</option>
<option value="allisog/allisog.270000-279999">270000-279999</option>
<option value="allisog/allisog.280000-289999">280000-289999</option>
<option value="allisog/allisog.290000-299999">290000-299999</option>
<option value="allisog/allisog.300000-309999">300000-309999</option>
<option value="allisog/allisog.310000-319999">310000-319999</option>
<option value="allisog/allisog.320000-329999">320000-329999</option>
<option value="allisog/allisog.330000-339999">330000-339999</option>
<option value="allisog/allisog.340000-349999">340000-349999</option>
<option value="allisog/allisog.350000-359999">350000-359999</option>
<option value="allisog/allisog.360000-369999">360000-369999</option>
<option value="allisog/allisog.370000-379999">370000-379999</option>
<option value="allisog/allisog.380000-389999">380000-389999</option>
<option value="allisog/allisog.390000-399999">390000-399999</option>
<option value="allisog/allisog.400000-409999">400000-409999</option>
<option value="allisog/allisog.410000-419999">410000-419999</option>
<option value="allisog/allisog.420000-429999">420000-429999</option>
<option value="allisog/allisog.430000-439999">430000-439999</option>
<option value="allisog/allisog.440000-449999">440000-449999</option>
<option value="allisog/allisog.450000-459999">450000-459999</option>
<option value="allisog/allisog.460000-469999">460000-469999</option>
<option value="allisog/allisog.470000-479999">470000-479999</option>
<option value="allisog/allisog.480000-489999">480000-489999</option>
<option value="allisog/allisog.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
A table giving the degrees of isogenies within each isogeny class. One row
for each isogeny class.
<br>
Data format with sample line:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th> <th>class</th> <th>#</th> <th>[a1,a2,a3,a4,a6]</th>
<th>curves in the class</th>
<th>isogeny matrix</th>
</tr>
<tr>
<td>14</td> <td>a</td> <td>1</td> <td>[1,0,1,4,-6]</td>
<td>[[1,0,1,4,-6],[1,0,1,-36,-70],[1,0,1,-171,-874],[1,0,1,-1,0],[1,0,1,-2731,-55146],[1,0,1,-11,12]]</td>
<td>[[1,2,3,3,6,6],[2,1,6,6,3,3],[3,6,1,9,2,18],[3,6,9,1,18,2],[6,3,2,18,1,9],[6,3,18,2,9,1]]</td>
</tr></tbody></table>
where the isogeny matrix has (<i>i</i>,<i>j</i>) entry <i>d</i> when
the there is a cyclic isogeny of degree <i>d</i> from curve <i>i</i>
to curve <i>j</i>.
</li></ul>
<h3>
TABLE SEVEN: INTEGRAL POINTS
</h3>
<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="intpts/intpts.00000-09999">1-9999</option>
<option value="intpts/intpts.10000-19999">10000-19999</option>
<option value="intpts/intpts.20000-29999">20000-29999</option>
<option value="intpts/intpts.30000-39999">30000-39999</option>
<option value="intpts/intpts.40000-49999">40000-49999</option>
<option value="intpts/intpts.50000-59999">50000-59999</option>
<option value="intpts/intpts.60000-69999">60000-69999</option>
<option value="intpts/intpts.70000-79999">70000-79999</option>
<option value="intpts/intpts.80000-89999">80000-89999</option>
<option value="intpts/intpts.90000-99999">90000-99999</option>
<option value="intpts/intpts.100000-109999">100000-109999</option>
<option value="intpts/intpts.110000-119999">110000-119999</option>
<option value="intpts/intpts.120000-129999">120000-129999</option>
<option value="intpts/intpts.130000-139999">130000-139999</option>
<option value="intpts/intpts.140000-149999">140000-149999</option>
<option value="intpts/intpts.150000-159999">150000-159999</option>
<option value="intpts/intpts.160000-169999">160000-169999</option>
<option value="intpts/intpts.170000-179999">170000-179999</option>
<option value="intpts/intpts.180000-189999">180000-189999</option>
<option value="intpts/intpts.190000-199999">190000-199999</option>
<option value="intpts/intpts.200000-209999">200000-209999</option>
<option value="intpts/intpts.210000-219999">210000-219999</option>
<option value="intpts/intpts.220000-229999">220000-229999</option>
<option value="intpts/intpts.230000-239999">230000-239999</option>
<option value="intpts/intpts.240000-249999">240000-249999</option>
<option value="intpts/intpts.250000-259999">250000-259999</option>
<option value="intpts/intpts.260000-269999">260000-269999</option>
<option value="intpts/intpts.270000-279999">270000-279999</option>
<option value="intpts/intpts.280000-289999">280000-289999</option>
<option value="intpts/intpts.290000-299999">290000-299999</option>
<option value="intpts/intpts.300000-309999">300000-309999</option>
<option value="intpts/intpts.310000-319999">310000-319999</option>
<option value="intpts/intpts.320000-329999">320000-329999</option>
<option value="intpts/intpts.330000-339999">330000-339999</option>
<option value="intpts/intpts.340000-349999">340000-349999</option>
<option value="intpts/intpts.350000-359999">350000-359999</option>
<option value="intpts/intpts.360000-369999">360000-369999</option>
<option value="intpts/intpts.370000-379999">370000-379999</option>
<option value="intpts/intpts.380000-389999">380000-389999</option>
<option value="intpts/intpts.390000-399999">390000-399999</option>
<option value="intpts/intpts.400000-409999">400000-409999</option>
<option value="intpts/intpts.410000-419999">410000-419999</option>
<option value="intpts/intpts.420000-429999">420000-429999</option>
<option value="intpts/intpts.430000-439999">430000-439999</option>
<option value="intpts/intpts.440000-449999">440000-449999</option>
<option value="intpts/intpts.450000-459999">450000-459999</option>
<option value="intpts/intpts.460000-469999">460000-469999</option>
<option value="intpts/intpts.470000-479999">470000-479999</option>
<option value="intpts/intpts.480000-489999">480000-489999</option>
<option value="intpts/intpts.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
A table giving the x-coordinates of all integral points on all curves.
<br>
Data format with sample line:
<table cellspacing="10" border="1">
<tbody><tr>
<th>Curve</th> <th>[a1,a2,a3,a4,a6]</th>
<th align="left">x-coordinates of integral points</th>
</tr>
<tr>
<td>114114bz1</td>
<td>[1,0,0,-858375,380956041]</td>
<td>[-1098,-1042,-990,-954,-756,-522,-426,-72,36,102,270,354,414,498,596,630,726,918,960,1334,1590,1818,1974,2702,3006,3690,5250,6966,8352,9702,18054,24438,31848,48150,119988,295254,913014]</td>
</tr></tbody></table>
</li></ul>
<h3>
<a NAME="optimality">TABLE EIGHT: OPTIMALITY AND THE MANIN CONSTANT</a>
</h3>
<ul>
<li>
<p>
For isogeny classes of curves of conductor greater than 400000, we have
not yet determined in all cases which curve in each class is optimal.
However, in all cases we have verified that the Manin constant of the
optimal curve is equal to 1 (as it is conjectured to be for every
optimal curve), even in cases where we do not know for sure which
curve is optimal.
</p>
<p>
While we can (using our modular symbols programs) determine the
optimal curve in any individual case, this takes a long time to do for
all remaining cases; this is ongoing. For more details on this, see
my Appendix to the paper "The Manin Constant" by Amod Agashe, Ken
Ribet and William Stein [Pure and Applied Mathematics Quarterly,
Vol. 2 no.2 (2006), pp. 617-636.]
and <a href="manin.txt">these
detailed notes</a> with full results for all conductors to 500000.
These updated results include the proof that Manin's constant is 1 in
all cases, together with a list of which curves in the class might be
optimal, given the incomplete modular symbol computations carried out
to date. Note, however, that it follows from computation of the
modular degrees of all curves in the class (which computation is
conditional on Stevens's conjecture) that the optimal curve is always
the first curve listed.
</p>
<p>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="opt_man/opt_man.00000-09999">00000-09999</option>
<option value="opt_man/opt_man.10000-19999">10000-19999</option>
<option value="opt_man/opt_man.20000-29999">20000-29999</option>
<option value="opt_man/opt_man.30000-39999">30000-39999</option>
<option value="opt_man/opt_man.40000-49999">40000-49999</option>
<option value="opt_man/opt_man.50000-59999">50000-59999</option>
<option value="opt_man/opt_man.60000-69999">60000-69999</option>
<option value="opt_man/opt_man.70000-79999">70000-79999</option>
<option value="opt_man/opt_man.80000-89999">80000-89999</option>
<option value="opt_man/opt_man.90000-99999">90000-99999</option>
<option value="opt_man/opt_man.100000-109999">100000-109999</option>
<option value="opt_man/opt_man.110000-119999">110000-119999</option>
<option value="opt_man/opt_man.120000-129999">120000-129999</option>
<option value="opt_man/opt_man.130000-139999">130000-139999</option>
<option value="opt_man/opt_man.140000-149999">140000-149999</option>
<option value="opt_man/opt_man.150000-159999">150000-159999</option>
<option value="opt_man/opt_man.160000-169999">160000-169999</option>
<option value="opt_man/opt_man.170000-179999">170000-179999</option>
<option value="opt_man/opt_man.180000-189999">180000-189999</option>
<option value="opt_man/opt_man.190000-199999">190000-199999</option>
<option value="opt_man/opt_man.200000-209999">200000-209999</option>
<option value="opt_man/opt_man.210000-219999">210000-219999</option>
<option value="opt_man/opt_man.220000-229999">220000-229999</option>
<option value="opt_man/opt_man.230000-239999">230000-239999</option>
<option value="opt_man/opt_man.240000-249999">240000-249999</option>
<option value="opt_man/opt_man.250000-259999">250000-259999</option>
<option value="opt_man/opt_man.260000-269999">260000-269999</option>
<option value="opt_man/opt_man.270000-279999">270000-279999</option>
<option value="opt_man/opt_man.280000-289999">280000-289999</option>
<option value="opt_man/opt_man.290000-299999">290000-299999</option>
<option value="opt_man/opt_man.300000-309999">300000-309999</option>
<option value="opt_man/opt_man.310000-319999">310000-319999</option>
<option value="opt_man/opt_man.320000-329999">320000-329999</option>
<option value="opt_man/opt_man.330000-339999">330000-339999</option>
<option value="opt_man/opt_man.340000-349999">340000-349999</option>
<option value="opt_man/opt_man.350000-359999">350000-359999</option>
<option value="opt_man/opt_man.360000-369999">360000-369999</option>
<option value="opt_man/opt_man.370000-379999">370000-379999</option>
<option value="opt_man/opt_man.380000-389999">380000-389999</option>
<option value="opt_man/opt_man.390000-399999">390000-399999</option>
<option value="opt_man/opt_man.400000-409999">400000-409999</option>
<option value="opt_man/opt_man.410000-419999">410000-419999</option>
<option value="opt_man/opt_man.420000-429999">420000-429999</option>
<option value="opt_man/opt_man.430000-439999">430000-439999</option>
<option value="opt_man/opt_man.440000-449999">440000-449999</option>
<option value="opt_man/opt_man.450000-459999">450000-459999</option>
<option value="opt_man/opt_man.460000-469999">460000-469999</option>
<option value="opt_man/opt_man.470000-479999">470000-479999</option>
<option value="opt_man/opt_man.480000-489999">480000-489999</option>
<option value="opt_man/opt_man.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
Table of results known regarding optimality and Manin constant in all
isogeny classes. For conductors greater than 400000, the values of
the Manin constant are conditional on the first curve in the class
being optimal.
<br>
Data format with sample lines:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th> <th>class</th> <th>#</th> <th>[a1,a2,a3,a4,a6]</th> <th>Optimality code</th> <th>Manin constant</th>
</tr>
<tr><td>11</td><td>a</td><td>1</td><td>[0,-1,1,-10,-20]</td><td>1</td><td>1</td></tr>
<tr><td>11</td><td>a</td><td>2</td><td>[0,-1,1,-7820,-263580]</td><td>0</td><td>1</td></tr>
<tr><td>11</td><td>a</td><td>3</td><td>[0,-1,1,0,0]</td><td>0</td><td>5</td></tr>
<tr><td>499992</td><td>a</td><td>1</td><td>[0,-1,0,4481,148204]</td><td>3</td><td>1</td></tr>
<tr><td>499992</td><td>a</td><td>2</td><td>[0,-1,0,-29964,1526004]</td><td>3</td><td>1</td></tr>
<tr><td>499992</td><td>a</td><td>3</td><td>[0,-1,0,-446624,115024188]</td><td>3</td><td>1</td></tr>
<tr><td>499992</td><td>a</td><td>4</td><td>[0,-1,0,-164424,-24344100]</td><td>0</td><td>1</tr>
</tbody></table>
</p>
<p>
The optimality code is 0 for "not optimal", 1 for "optimal"
and <i>n</i> for "one of <i>n</i> possibly optimal curves in this
isogeny class". In the case of isogeny class 11a above, out of the
three curves in the class, the optimal curve is 11a1 (which is
$X_0(11)$), the first two curves have Manin constant 1, while the
curve 11a3 (which is $X_1(11)$) has Manin constant equal to 5. In the
class 499992a, out of four curves, the optimal curve is certainly one
of the first 3; and if the optimal curve is indeed 499992a1 then all
the Manin constants are equal to 1.
</p>
</li>
</ul>
<h3>
TABLE NINE: IMAGES OF GALOIS REPRESENTATIONS
</h3>
<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="galrep/galrep.00000-09999">1-9999</option>
<option value="galrep/galrep.10000-19999">10000-19999</option>
<option value="galrep/galrep.20000-29999">20000-29999</option>
<option value="galrep/galrep.30000-39999">30000-39999</option>
<option value="galrep/galrep.40000-49999">40000-49999</option>
<option value="galrep/galrep.50000-59999">50000-59999</option>
<option value="galrep/galrep.60000-69999">60000-69999</option>
<option value="galrep/galrep.70000-79999">70000-79999</option>
<option value="galrep/galrep.80000-89999">80000-89999</option>
<option value="galrep/galrep.90000-99999">90000-99999</option>
<option value="galrep/galrep.100000-109999">100000-109999</option>
<option value="galrep/galrep.110000-119999">110000-119999</option>
<option value="galrep/galrep.120000-129999">120000-129999</option>
<option value="galrep/galrep.130000-139999">130000-139999</option>
<option value="galrep/galrep.140000-149999">140000-149999</option>
<option value="galrep/galrep.150000-159999">150000-159999</option>
<option value="galrep/galrep.160000-169999">160000-169999</option>
<option value="galrep/galrep.170000-179999">170000-179999</option>
<option value="galrep/galrep.180000-189999">180000-189999</option>
<option value="galrep/galrep.190000-199999">190000-199999</option>
<option value="galrep/galrep.200000-209999">200000-209999</option>
<option value="galrep/galrep.210000-219999">210000-219999</option>
<option value="galrep/galrep.220000-229999">220000-229999</option>
<option value="galrep/galrep.230000-239999">230000-239999</option>
<option value="galrep/galrep.240000-249999">240000-249999</option>
<option value="galrep/galrep.250000-259999">250000-259999</option>
<option value="galrep/galrep.260000-269999">260000-269999</option>
<option value="galrep/galrep.270000-279999">270000-279999</option>
<option value="galrep/galrep.280000-289999">280000-289999</option>
<option value="galrep/galrep.290000-299999">290000-299999</option>
<option value="galrep/galrep.300000-309999">300000-309999</option>
<option value="galrep/galrep.310000-319999">310000-319999</option>
<option value="galrep/galrep.320000-329999">320000-329999</option>
<option value="galrep/galrep.330000-339999">330000-339999</option>
<option value="galrep/galrep.340000-349999">340000-349999</option>
<option value="galrep/galrep.350000-359999">350000-359999</option>
<option value="galrep/galrep.360000-369999">360000-369999</option>
<option value="galrep/galrep.370000-379999">370000-379999</option>
<option value="galrep/galrep.380000-389999">380000-389999</option>
<option value="galrep/galrep.390000-399999">390000-399999</option>
<option value="galrep/galrep.400000-409999">400000-409999</option>
<option value="galrep/galrep.410000-419999">410000-419999</option>
<option value="galrep/galrep.420000-429999">420000-429999</option>
<option value="galrep/galrep.430000-439999">430000-439999</option>
<option value="galrep/galrep.440000-449999">440000-449999</option>
<option value="galrep/galrep.450000-459999">450000-459999</option>
<option value="galrep/galrep.460000-469999">460000-469999</option>
<option value="galrep/galrep.470000-479999">470000-479999</option>
<option value="galrep/galrep.480000-489999">480000-489999</option>
<option value="galrep/galrep.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
A table giving the for each elliptic curve the primes <i>p</i> for
which the mod-<i>p</i> Galois representation is not maximal, as
computed by Andrew Sutherland, together with a code identifying the
image (as a subgroup of GL(2,<i>p</i>), up to conjugation). For
curves with CM the representation is never surjective and the image is
shown when it is not maximal, where maximal means as large as possible
given the constraints imposed by the endomorphism ring of E. For
curves without CM, the representation is surjective for all but
finitely many primes (Serre) and is conjectured to be surjective
for <i>p</i>>37, but this was only checked for 37<<i>p</i><80.
<br>
Data format with sample lines:
<table cellspacing="10" border="1">
<tbody><tr>
<th>Curve</th><th align="left">list of non-surjective images</th>
</tr>
<tr>
<td>11a1</td><td>5Cs.1.1</td>
</tr>
<tr>
<td>27a1</td><td>3Cs.1.1</td>
</tr>
<tr>
<td>37a1</td><td> </td>
</tr>
</tbody></table>
</li></ul>
<h3>
TABLE TEN: IMAGES OF TWO-ADIC GALOIS REPRESENTATION
</h3>
<ul>
<li>
<form>
<select name="url" width=30>
<option value="None">Select a conductor range</option>
<option value="2adic/2adic.00000-09999">1-9999</option>
<option value="2adic/2adic.10000-19999">10000-19999</option>
<option value="2adic/2adic.20000-29999">20000-29999</option>
<option value="2adic/2adic.30000-39999">30000-39999</option>
<option value="2adic/2adic.40000-49999">40000-49999</option>
<option value="2adic/2adic.50000-59999">50000-59999</option>
<option value="2adic/2adic.60000-69999">60000-69999</option>
<option value="2adic/2adic.70000-79999">70000-79999</option>
<option value="2adic/2adic.80000-89999">80000-89999</option>
<option value="2adic/2adic.90000-99999">90000-99999</option>
<option value="2adic/2adic.100000-109999">100000-109999</option>
<option value="2adic/2adic.110000-119999">110000-119999</option>
<option value="2adic/2adic.120000-129999">120000-129999</option>
<option value="2adic/2adic.130000-139999">130000-139999</option>
<option value="2adic/2adic.140000-149999">140000-149999</option>
<option value="2adic/2adic.150000-159999">150000-159999</option>
<option value="2adic/2adic.160000-169999">160000-169999</option>
<option value="2adic/2adic.170000-179999">170000-179999</option>
<option value="2adic/2adic.180000-189999">180000-189999</option>
<option value="2adic/2adic.190000-199999">190000-199999</option>
<option value="2adic/2adic.200000-209999">200000-209999</option>
<option value="2adic/2adic.210000-219999">210000-219999</option>
<option value="2adic/2adic.220000-229999">220000-229999</option>
<option value="2adic/2adic.230000-239999">230000-239999</option>
<option value="2adic/2adic.240000-249999">240000-249999</option>
<option value="2adic/2adic.250000-259999">250000-259999</option>
<option value="2adic/2adic.260000-269999">260000-269999</option>
<option value="2adic/2adic.270000-279999">270000-279999</option>
<option value="2adic/2adic.280000-289999">280000-289999</option>
<option value="2adic/2adic.290000-299999">290000-299999</option>
<option value="2adic/2adic.300000-309999">300000-309999</option>
<option value="2adic/2adic.310000-319999">310000-319999</option>
<option value="2adic/2adic.320000-329999">320000-329999</option>
<option value="2adic/2adic.330000-339999">330000-339999</option>
<option value="2adic/2adic.340000-349999">340000-349999</option>
<option value="2adic/2adic.350000-359999">350000-359999</option>
<option value="2adic/2adic.360000-369999">360000-369999</option>
<option value="2adic/2adic.370000-379999">370000-379999</option>
<option value="2adic/2adic.380000-389999">380000-389999</option>
<option value="2adic/2adic.390000-399999">390000-399999</option>
<option value="2adic/2adic.400000-409999">400000-409999</option>
<option value="2adic/2adic.410000-419999">410000-419999</option>
<option value="2adic/2adic.420000-429999">420000-429999</option>
<option value="2adic/2adic.430000-439999">430000-439999</option>
<option value="2adic/2adic.440000-449999">440000-449999</option>
<option value="2adic/2adic.450000-459999">450000-459999</option>
<option value="2adic/2adic.460000-469999">460000-469999</option>
<option value="2adic/2adic.470000-479999">470000-479999</option>
<option value="2adic/2adic.480000-489999">480000-489999</option>
<option value="2adic/2adic.490000-499999">490000-499999</option>
</select>
<input type=button value="Fetch" onClick="JumpToIt(this.form)">
</form>
A table giving, for each elliptic curve without CM, the image of the
2-adic Galois representation, as computed using a Magma program
provided by Jeremy Rouse and David Zureick Brown.
There are 1208 possible images. The index is the index of the image
in GL(2,Z_2). The level is the largest n such that the image contains
the kernel of reduction modulo 2^n. The generators are generating
matrices for the image modulo the level. Note that the action of
Galois is on the right, so points in E[2^r] are represented as row
vectors v and if M is in GL_2(Z_2) the action of M is v |-> v*M.
The label is a label for the associated modular
curve. See <a href="http://users.wfu.edu/rouseja/2adic/index.html">Rouses's
web page</a> for details.
<br>
Data format with sample lines:
<table cellspacing="10" border="1">
<tbody><tr>
<th>N</th> <th>class</th> <th>#</th> <th>[a1,a2,a3,a4,a6]</th>
<th>index</th><th>level</th>
<th align="left">matrix generators</th>
<th>label</th>
</tr>
<tr>
<td>11</td></td><td>a</td><td>1</td><td>[0,-1,1,-10,-20]</td><td>1</td><td>1</td><td>[]</td><td>X1</td>
</tr>
<tr>
<td>15</td><td>a</td><td>1</td><td>[1,1,1,-10,-10]</td><td>96</td><td>8</td>
<td>[[5,4,2,3],[1,0,0,5],[1,4,0,5],[1,0,4,5]]</td><td>X187d</td>
</tr>
</tbody></table>
</li></ul>
<h3>
TABLE ELEVEN: TORSION GROWTH
</h3>
Torsion growth data has been computed so far for curves of conductor up
to 400000, for extensions of degree up to 23. (In degrees 11, 13,
17, 19, 22 and 23 there are no cases of torsion growth).
<ul>
<li>
<form>
<select name="deg" width=10>
<option value="None">Select a degree</option>
<option value="2">2</option>
<option value="3">3</option>
<option value="4">4</option>
<option value="5">5</option>
<option value="6">6</option>
<option value="7">7</option>
<option value="8">8</option>
<option value="9">9</option>
<option value="10">10</option>
<option value="12">12</option>
<option value="14">14</option>
<option value="15">15</option>
<option value="16">16</option>
<option value="18">18</option>
<option value="20">20</option>
<option value="21">21</option>
</select>
<select name="range" width=10>
<option value="None">Select a conductor range</option>
<option value="0-9999">0-9999</option>
<option value="10000-19999">10000-19999</option>
<option value="20000-29999">20000-29999</option>
<option value="30000-39999">30000-39999</option>
<option value="40000-49999">40000-49999</option>
<option value="50000-59999">50000-59999</option>
<option value="60000-69999">60000-69999</option>
<option value="70000-79999">70000-79999</option>
<option value="80000-89999">80000-89999</option>
<option value="90000-99999">90000-99999</option>
<option value="100000-109999">100000-109999</option>
<option value="110000-119999">110000-119999</option>
<option value="120000-129999">120000-129999</option>
<option value="130000-139999">130000-139999</option>
<option value="140000-149999">140000-149999</option>
<option value="150000-159999">150000-159999</option>
<option value="160000-169999">160000-169999</option>
<option value="170000-179999">170000-179999</option>
<option value="180000-189999">180000-189999</option>
<option value="190000-199999">190000-199999</option>
<option value="200000-209999">200000-209999</option>
<option value="210000-219999">210000-219999</option>
<option value="220000-229999">220000-229999</option>
<option value="230000-239999">230000-239999</option>
<option value="240000-249999">240000-249999</option>
<option value="250000-259999">250000-259999</option>
<option value="260000-269999">260000-269999</option>
<option value="270000-279999">270000-279999</option>
<option value="280000-289999">280000-289999</option>
<option value="290000-299999">290000-299999</option>
<option value="300000-309999">300000-309999</option>
<option value="310000-319999">310000-319999</option>
<option value="320000-329999">320000-329999</option>
<option value="330000-339999">330000-339999</option>
<option value="340000-349999">340000-349999</option>
<option value="350000-359999">350000-359999</option>
<option value="360000-369999">360000-369999</option>
<option value="370000-379999">370000-379999</option>
<option value="380000-389999">380000-389999</option>
<option value="390000-399999">390000-399999</option>
</select>
<input type=button value="Fetch" onClick="JumpToTorGro(this.form)">
</form>
<p>
For 2 ≤ <i>d</i> ≤ 23 we give for every curve <i>E</i> a list of the number
fields <i>K</i> of degree <i>d</i> (if any) such that <i>E</i>(<i>K</i>)<sub>tors</sub> is strictly
larger than <i>E</i>(<b>Q</b>)<sub>tors</sub> (and in case <i>d</i> is composite,
strictly larger than <i>E</i>(<i>K'</i>)<sub>tors</sub> for all subfields <i>K'</i>⊂
</i>K</i>).
</p>
<p>
Fields are specified by the coefficients of a canonical defining polynomial.
Torsion structure is shown as [n] or [m,n] with m dividing n.
</p>
<p>
Data format with sample lines (one in degree 2, one in degree 12):
<table cellspacing="10" border="1">
<tbody><tr>
<th>Curve label</th> <th>[Torsion][Field]</th> <th>[Torsion][Field]</th> <th>[Torsion][Field]</th>
</tr>
<tr>
<td>130014e1</td> <td>[2,2][1806,-1,1]</td> <td>[4][-23,-1,1]</td> <td>[4][175,-1,1]</td>
</tr>
<tr>
<td>130032e1</td> <td colspan=3>[4][-10346,8862,-13965,14728,-4689,-1362,387,156,129,-86,9,0,1]</td>
</tr>
<tr>
</tr>
</tbody></table>
</p>
<hr>
<p><b>Recent update
notes</b>: <a href="release_notes.md">27 November 2020</a>
</p><hr>
<tt>john dot cremona at gmail dot com</tt>
<hr>
</body>
</html>
|