1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
######################################################################
#
# Utility and coding/decoding functions
#
######################################################################
import re
from sage.all import ZZ, QQ, RR, sage_eval, EllipticCurve, EllipticCurve_from_c4c6
whitespace = re.compile(r'\s+')
def split(line):
return whitespace.split(line.strip())
def parse_int_list(s, delims=True):
r"""
Given a string like '[a1,a2,a3,a4,a6]' returns the list of integers [a1,a2,a3,a4,a6]
"""
ss = s[1:-1] if delims else s
return [] if ss == '' else [ZZ(a) for a in ss.split(',')]
def parse_int_list_list(s):
r"""
Given a string like '[[1,2,3],[4,5,6]]' returns the list of lists of integers [[1,2,3],[4,5,6]]
"""
ss = s.replace(" ", "")
return [] if ss == '[]' else [parse_int_list(a, False) for a in ss[2:-2].split('],[')]
def proj_to_aff(s):
r"""
Converts projective coordinate string '[x:y:z]' to affine coordinate string '[x/z,y/z]'
"""
x, y, z = [ZZ(c) for c in s[1:-1].split(":")]
return "[{},{}]".format(x/z, y/z)
def proj_to_weighted_proj(s):
r"""Converts projective coordinate string '[x:y:z]' to list [a,b,c]
where [x,y,z]=[ac,b,c^3] and [x/z,y/z]=[a/c^2,b/c^3]
"""
x, b, z = [ZZ(c) for c in s[1:-1].split(":")]
c = x.gcd(z)
a = x//c
return [a, b, c]
def weighted_proj_to_proj(s):
r"""Converts weighted projective coordinate string '[a,b,c]'
representing the point (a/c^2,b/c^3) to projective coordinate
string '[x:y:z]' where [x,y,z]=[ac,b,c^3].
"""
if isinstance(s, type('string')):
a, b, c = [ZZ(t) for t in s[1:-1].split(",")]
else:
a, b, c = s
return "[{}:{}:{}]".format(a*c, b, c**3)
def point_to_weighted_proj(P):
r"""Converts rational point P=(x,y) to weighted projective coordinates [a,b,c]
where x=a/c^2, y=b/c^3
"""
x, y, _ = list(P)
a = x.numerator()
b = y.numerator()
c = y.denominator() // x.denominator()
return [a, b, c]
def point_to_proj(P):
r"""Converts rational point P=(x,y) to projective coordinates [a,b,c]
where x=a/c, y=b/c
"""
x, y, _ = list(P)
c = y.denominator()
a = ZZ(c*x)
b = ZZ(c*y)
return "[" + ":".join([str(co) for co in [a, b, c]]) + "]"
def proj_to_point(s, E):
r"""
Converts projective coordinate string '[x:y:z]' to a point on E
"""
return E.point([ZZ(c) for c in s[1:-1].split(":")])
def split_galois_image_code(s):
"""Each code starts with a prime (1-3 digits but we allow for more)
followed by an image code for that prime. This function returns
two substrings, the prefix number and the rest.
"""
p = re.findall(r'\d+', s)[0]
return p, s[len(p):]
def weighted_proj_to_affine_point(P):
r""" Converts a triple of integers representing a point in weighted
projective coordinates [a,b,c] to a tuple of rationals (a/c^2,b/c^3).
"""
a, b, c = [ZZ(x) for x in P]
return (a/c**2, b/c**3)
def parse_twoadic_string(s, raw=False):
r""" Parses one 2-adic string
Input a string with 4 fields, as output by the Magma make_2adic_tring() function, e.g.
"12 4 [[3,0,0,1],[3,2,2,3],[3,0,0,3]] X24"
"inf inf [] CM"
Returns a dict with keys 'twoadic_index', 'twoadic_log_level', 'twoadic_gens', 'twoadic_label'
"""
record = {}
data = split(s)
assert len(data) == 4
model = data[3]
if model == 'CM':
record['twoadic_index'] = '0'
record['twoadic_log_level'] = None
record['twoadic_gens'] = None
record['twoadic_label'] = None
else:
record['twoadic_label'] = model
record['twoadic_index'] = data[0] if raw else int(data[0])
log_level = ZZ(data[1]).valuation(2)
record['twoadic_log_level'] = str(log_level) if raw else int(log_level)
rgens = data[2]
if raw:
record['twoadic_gens'] = rgens
else:
if rgens == '[]':
record['twoadic_gens'] = []
else:
gens = rgens[1:-1].replace('],[', '];[').split(';')
record['twoadic_gens'] = [[int(c) for c in g[1:-1].split(',')] for g in gens]
return record
def curve_from_inv_string(s):
"""From a string representing a list of 2 or 5 integers, return the
elliptic curve defined by these as a- or c-invariants.
"""
invs = parse_int_list(s)
if len(invs) == 5:
E = EllipticCurve(invs).minimal_model()
elif len(invs) == 2:
E = EllipticCurve_from_c4c6(*invs).minimal_model()
else:
raise ValueError("{}: invariant list must have length 2 or 5".format(s))
return E
######################################################################
#
# Coding and decoding functions
#
str_type = type('abc')
bool_type = type(True)
list_type = type([1, 2, 3])
int_type = type(int(1))
ZZ_type = type(ZZ(1))
QQ_type = type(QQ(1))
RR_type = type(RR(1))
number_types = [int_type, ZZ_type, RR_type]
encoders = {str_type: lambda x: x,
bool_type: lambda x: str(int(x)),
int_type: str,
ZZ_type: str,
RR_type: str,
QQ_type: lambda x: str([x.numer(), x.denom()]).replace(" ", ""),
# handle lists of strings
list_type: lambda x: str(x).replace(" ", "").replace("'", ""),
}
def encode(x):
if x is None:
return "?"
t = type(x)
if t in encoders:
return encoders[t](x)
print("no encoding for {} of type {}".format(x, t))
return x
str_cols = ['label', 'iso', 'isoclass', 'lmfdb_label', 'lmfdb_isoclass', 'lmfdb_iso']
int_cols = ['number', 'lmfdb_number', 'iso_nlabel', 'faltings_index',
'faltings_ratio', 'conductor', 'cm', 'signD',
'min_quad_twist_disc', 'rank', 'analytic_rank', 'ngens',
'torsion', 'tamagawa_product', 'sha', 'class_size', 'class_deg',
'nonmax_rad', 'twoadic_index']
bigint_cols = ['trace_hash', 'absD']
int_list_cols = ['ainvs', 'isogeny_degrees', 'min_quad_twist_ainvs',
'bad_primes', 'tamagawa_numbers', 'kodaira_symbols',
'reduction_types', 'root_numbers', 'conductor_valuations',
'discriminant_valuations',
'j_denominator_valuations', 'rank_bounds',
'torsion_structure',
'aplist', 'anlist', 'nonmax_primes']
int_list_list_cols = ['isogeny_matrix', 'gens', 'torsion_generators']
bool_cols = ['semistable']
QQ_cols = ['jinv']
RR_cols = ['regulator', 'real_period', 'area', 'faltings_height', 'stable_faltings_height', 'special_value', 'sha_an']
RR_list_cols = ['heights']
str_list_cols = ['modp_images']
decoders = {}
for col in str_cols:
decoders[col] = lambda x: x
for col in bigint_cols:
decoders[col] = ZZ
for col in int_cols:
decoders[col] = ZZ
for col in int_list_cols:
decoders[col] = parse_int_list
for col in bool_cols:
decoders[col] = lambda x: bool(int(x))
for col in int_list_list_cols:
decoders[col] = parse_int_list_list
for col in RR_cols:
decoders[col] = sage_eval
for col in QQ_cols:
decoders[col] = lambda x: QQ(tuple(parse_int_list(x)))
for col in RR_list_cols:
decoders[col] = lambda x: [] if x == '[]' else [sage_eval(d) for d in x[1:-1].split(",")]
for col in str_list_cols:
decoders[col] = lambda x: [] if x == '[]' else x[1:-1].split(",")
# Three 2-adic columns are special, their values are None encoded as '?' for CM curves
# 'twoadic_label' is string, or None ('?') for CM
decoders['twoadic_label'] = lambda x: None if x == '?' else x
# 'twoadic_log_level' is int, or None ('?') for CM
decoders['twoadic_log_level'] = lambda x: None if x == '?' else ZZ(x)
# 'twoadic_label' is lis(list(int)), or None ('?') for CM
decoders['twoadic_gens'] = lambda x: None if x == '?' else parse_int_list_list(x)
def decode(colname, data):
if colname in decoders:
return decoders[colname](data)
print("No decoder set for column {} (data = {})".format(colname, data))
return data
################################################################################
# some old functions
def liststr(l):
return str(l).replace(' ', '')
def shortstr(E):
return liststr(list(E.ainvs()))
def shortstrlist(Elist):
return str([list(F.ainvs()) for F in Elist]).replace(' ', '')
# convert '[x:y:z]' to '[x/z,y/z]'
def pointPtoA(P):
x, y, z = [ZZ(c) for c in P[1:-1].split(":")]
return [x/z, y/z]
def matstr(m):
return str(list(m)).replace('(', '[').replace(')', ']').replace(' ', '')
def mat_to_list_list(M):
m, n = M.dimensions()
return [[M[i][j] for j in range(n)] for i in range(m)]
|