1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
# elliptic curve utility functions for finding generators, saturating and mapping around an isogeny class
from sage.all import (pari, QQ,
mwrank_get_precision, mwrank_set_precision)
from magma import get_magma, MagmaEffort
mwrank_saturation_precision = 1000 # 500 not enough for 594594bf2
mwrank_saturation_maxprime = 1000
GP = '/usr/local/bin/gp'
# Assuming that E is known to have rank 1, returns a point on E
# computed by Magma's HeegnerPoint command
def magma_rank1_gen(E, mE):
mP = mE.HeegnerPoint(nvals=2)[1]
P = E([mP[i].sage() for i in [1, 2, 3]])
return P
# Assuming that E is known to have rank 1, returns a point on E
# computed by GP's ellheegner() command
def pari_rank1_gen_old(E, stacksize=1024000000):
from os import system, getpid, unlink
f = 'tempfile-'+str(getpid())
comm = "LD_LIBRARY_PATH=/usr/local/lib; echo `echo 'ellheegner(ellinit("+str(list(E.ainvs()))+"))' | %s -q -f -s %s` > %s;" % (GP, stacksize, f)
system(comm)
P = open(f).read()
#print(P)
P = open(f).read().partition("[")[2].partition("]")[0]
P = P.replace("\xb1", "") # needed for 497805u1
#print(P)
unlink(f)
P = E([QQ(c) for c in P.split(',')])
#print(P)
return P
def pari_rank1_gen(E):
return E(pari(E).ellheegner().sage())
def get_magma_gens(E, mE):
MS = mE.MordellWeilShaInformation(RankOnly=True, Effort=MagmaEffort, nvals=3)
rank_bounds = [r.sage() for r in MS[0]]
gens = [E(P.Eltseq().sage()) for P in MS[1]]
return rank_bounds, gens
def get_gens_mwrank(E):
return E.gens(algorithm='mwrank_lib', descent_second_limit=15, sat_bound=2)
def get_rank1_gens(E, mE, verbose=0):
if verbose:
print(" - trying a point search...")
gens = E.point_search(15)
if gens:
if verbose:
print("--success: P = {}".format(gens[0]))
return gens
if verbose:
print("--failed. Trying pari's ellheegner...")
gens = [pari_rank1_gen(E)]
if gens:
if verbose:
print("--success: P = {}".format(gens[0]))
return gens
if verbose:
print("--failed. Trying Magma's HeegnerPoint...")
try:
gens = [magma_rank1_gen(E, mE)]
if gens:
if verbose:
print("--success: P = {}".format(gens[0]))
return gens
except:
pass
if verbose:
print("-- failed. Trying Magma...")
_, gens = get_magma_gens(E, mE)
if gens:
if verbose:
print("--success: P = {}".format(gens[0]))
return gens
if verbose:
print("--failed. Trying mwrank...")
return get_gens_mwrank(E)
def get_gens_simon(E):
E.simon_two_descent(lim3=5000)
return E.gens()
def get_gens(E, ar, verbose=0):
if ar == 0:
return []
mag = get_magma()
mE = mag(E)
if ar == 1:
if verbose > 1:
print("{}: a.r.=1, finding a generator".format(E.ainvs()))
gens = get_rank1_gens(E, mE, verbose)
else: # ar >=2
if verbose > 1:
print("{}: a.r.={}, finding generators using Magma".format(E.ainvs(), ar))
_, gens = get_magma_gens(E, mE)
if verbose > 1:
print("gens = {}".format(gens))
# Now we have independent gens, and saturate them
prec0 = mwrank_get_precision()
mwrank_set_precision(mwrank_saturation_precision)
if verbose > 1:
print("Starting saturation (automatic saturation bound)...")
gens, index, reg = E.saturation(gens, max_prime=-1)
# if verbose > 1:
# print("Starting saturation (p<{})...".format(mwrank_saturation_maxprime))
# gens, index, reg = E.saturation(gens, max_prime=mwrank_saturation_maxprime)
mwrank_set_precision(prec0)
if verbose > 1:
print("... finished saturation (index {}, new reg={})".format(index, reg))
return gens
# Given a matrix of isogenies and a list of points on the initial
# curve returns a# list of their images on each other curve. The
# complication is that the isogenies will only exist when they have
# prime degree.
# Here we assume that the points in Plist are saturated, and only
# resaturate their images at primes up to the maximum prime dividing
# an isogeny degree.
def map_points(maps, Plist, verbose=0):
ncurves = len(maps)
if len(Plist) == 0:
return [[] for _ in range(ncurves)]
if ncurves == 1:
return [Plist]
if verbose > 1:
print("in map_points with degrees {}".format([[phi.degree() if phi else 0 for phi in r] for r in maps]))
maxp = max([max([max(phi.degree().support(), default=0) if phi else 0 for phi in r], default=0) for r in maps], default=0)
if verbose > 1:
print(" maxp = {}".format(maxp))
Qlists = [Plist] + [[]]*(ncurves-1)
nfill = 1
for i in range(ncurves):
if nfill == ncurves:
break
for j in range(1, ncurves):
if (maps[i][j] != 0) and Qlists[j] == []:
if verbose>1:
print("Mapping points from curve {} to curve {} via {}".format(i,j,maps[i][j]))
print("points to be mapped: {}".format(Qlists[i]))
Qlists[j] = [maps[i][j](P) for P in Qlists[i]]
nfill += 1
# now we saturate the points just computed at all primes up to maxp
prec0 = mwrank_get_precision()
mwrank_set_precision(mwrank_saturation_precision)
for i in range(1, ncurves):
E = Qlists[i][0].curve()
if verbose > 1:
print("Saturating curve {} (maxp={})...".format(i, maxp))
Qlists[i], n, _ = E.saturation(Qlists[i], max_prime=maxp)
if verbose > 1:
print("--saturation index was {}".format(n))
mwrank_set_precision(prec0)
return Qlists
|